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Motivation for studying gravity in 2 and 3 dimensions

I Quantum gravity
I Address conceptual issues of quantum gravity
I Black hole evaporation, information loss, black hole microstate

counting, virtual black hole production, ...
I Technically much simpler than 4D or higher D gravity
I Integrable models: powerful tools in physics (Coulomb problem,

Hydrogen atom, harmonic oscillator, ...)
I Models should be as simple as possible, but not simpler

I Gauge/gravity duality + indirect physics applications
I Deeper understanding of black hole holography
I AdS3/CFT2 correspondence best understood
I Quantum gravity via AdS/CFT? (Witten ’07, Li, Song, Strominger ’08)
I Applications to 2D condensed matter systems?
I Gauge gravity duality beyond standard AdS/CFT: warped AdS,

asymptotic Lifshitz, non-relativistic CFTs, logarithmic CFTs, ...

I Direct physics applications
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I Applications to 2D condensed matter systems?
I Gauge gravity duality beyond standard AdS/CFT: warped AdS,

asymptotic Lifshitz, non-relativistic CFTs, logarithmic CFTs, ...
I Direct physics applications

I Cosmic strings (Deser, Jackiw, ’t Hooft ’84, ’92)
I Black hole analog systems in condensed matter physics (graphene,

BEC, fluids, ...)
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Gravity in lower dimensions

Riemann-tensor D2(D2−1)
12 components in D dimensions:

I 11D: 1210 (1144 Weyl and 66 Ricci)
I 10D: 825 (770 Weyl and 55 Ricci)
I 5D: 50 (35 Weyl and 15 Ricci)
I 4D: 20 (10 Weyl and 10 Ricci)

I 3D: 6 (Ricci)
I 2D: 1 (Ricci scalar)

I 2D: lowest dimension exhibiting black holes (BHs)

I Simplest gravitational theories with BHs in 2D

I 3D: lowest dimension exhibiting BHs and gravitons

I Simplest gravitational theories with BHs and gravitons in 3D
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Attempt 1: Einstein–Hilbert in and near two dimensions

Let us start with the simplest attempt. Einstein-Hilbert action in 2
dimensions:

IEH =
1

16πG

∫
d2x
√
|g|R =

1

2G
(1− γ)

I Action is topological

I No equations of motion

I Formal counting of number of gravitons: -1

A specific 2D dilaton gravity model

Result of attempt 1:
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Attempt 1: Einstein–Hilbert in and near two dimensions

Let us continue with the next simplest attempt. Einstein-Hilbert

action in 2+ε dimensions:

IEH
ε =

1

16πG

∫
d2+εx

√
|g|R

I Weinberg: theory is asymptotically safe

I Mann: limit ε→ 0 should be possible and lead to 2D dilaton gravity

I DG, Jackiw: limit ε→ 0 yields Liouville gravity

lim
ε→0

IEH
ε =

1

16πG2

∫
d2x
√
|g|
[
XR− (∇X)2 + λe−2X

]

A specific 2D dilaton gravity model

Result of attempt 1:
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Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model

Jackiw, Teitelboim (Bunster): (A)dS2 gauge theory

[Pa, Pb] = Λ εabJ [Pa, J ] = εa
bPb

describes constant curvature gravity in 2D. Algorithm:

I Start with SO(1, 2) connection A = eaPa + ωJ
I Take field strength F = dA+ 1

2 [A,A] and coadjoint scalar X
I Construct non-abelian BF theory

I =

∫
XAF

A =

∫ [
Xa(de

a + εabω ∧ eb) +X dω + εabe
a ∧ eb ΛX

]
I Eliminate Xa (Torsion constraint) and ω (Levi-Civita connection)
I Obtain the second order action

I =
1

16πG2

∫
d2x
√
−g X [R− Λ]

A specific 2D dilaton gravity model

Result of attempt 2:
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Attempt 3: Dimensional reduction
For example: spherical reduction from D dimensions

Line element adapted to spherical symmetry:

ds2 = g(D)
µν︸︷︷︸

full metric

dxµ dxν = gαβ(xγ)︸ ︷︷ ︸
2D metric

dxα dxβ − φ2(xα)︸ ︷︷ ︸
surface area

dΩ2
SD−2

,

Insert into D-dimensional EH action IEH = κ
∫

dDx
√
−g(D)R(D):

IEH = κ
2π(D−1)/2

Γ(D−1
2 )

∫
d2x
√
−g φD−2

[
R+

(D − 2)(D − 3)

φ2

(
(∇φ)2 − 1

) ]
Cosmetic redefinition X ∝ (λφ)D−2:

IEH =
1

16πG2

∫
d2x
√
−g
[
XR+

D − 3

(D − 2)X
(∇X)2 − λ2X(D−4)/(D−2)

]

A specific class of 2D dilaton gravity models

Result of attempt 3:
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Attempt 4: Poincare gauge theory and higher power curvature theories

Basic idea: since EH is trivial consider f(R) theories or/and theories with
torsion or/and theories with non-metricity

I Example: Katanaev-Volovich model (Poincare gauge theory)

IKV ∼
∫

d2x
√
−g
[
αT 2 + βR2

]
I Kummer, Schwarz: bring into first order form:

IKV ∼
∫ [

Xa(de
a + εabω ∧ eb) +X dω + εabe

a ∧ eb (αXaXa + βX2)
]

I Use same algorithm as before to convert into second order action:

IKV =
1

16πG2

∫
d2x
√
−g
[
XR+ α(∇X)2 + βX2

]

A specific 2D dilaton gravity model

Result of attempt 4:
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Attempt 5: Strings in two dimensions

Conformal invariance of the σ model

Iσ ∝
∫

d2ξ
√
|h|
[
gµνh

ij∂ix
µ∂jx

ν + α′φR+ . . .
]

requires vanishing of β-functions

βφ ∝ −4b2 − 4(∇φ)2 + 4�φ+R+ . . .

βgµν ∝ Rµν + 2∇µ∇νφ+ . . .

Conditions βφ = βgµν = 0 follow from target space action

Itarget =
1

16πG2

∫
d2x
√
−g
[
XR+

1

X
(∇X)2 − 4b2

]
where X = e−2φ

A specific 2D dilaton gravity model

Result of attempt 5:
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Selected List of Models
Black holes in (A)dS, asymptotically flat or arbitrary spaces (Wheeler property)

Model U(X) V (X)

1. Schwarzschild (1916) − 1
2X

−λ2

2. Jackiw-Teitelboim (1984) 0 ΛX
3. Witten Black Hole (1991) − 1

X
−2b2X

4. CGHS (1992) 0 −2b2

5. (A)dS2 ground state (1994) − a
X

BX
6. Rindler ground state (1996) − a

X
BXa

7. Black Hole attractor (2003) 0 BX−1

8. Spherically reduced gravity (N > 3) − N−3
(N−2)X

−λ2X(N−4)/(N−2)

9. All above: ab-family (1997) − a
X

BXa+b

10. Liouville gravity a beαX

11. Reissner-Nordström (1916) − 1
2X

−λ2 + Q2

X

12. Schwarzschild-(A)dS − 1
2X

−λ2 − `X
13. Katanaev-Volovich (1986) α βX2 − Λ

14. BTZ/Achucarro-Ortiz (1993) 0 Q2

X
− J

4X3 − ΛX
15. KK reduced CS (2003) 0 1

2
X(c−X2)

16. KK red. conf. flat (2006) − 1
2

tanh (X/2) A sinhX

17. 2D type 0A string Black Hole − 1
X

−2b2X + b2q2

8π

18. exact string Black Hole (2005) lengthy lengthy
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Synthesis of all attempts: Dilaton gravity in two dimensions

Second order action:

I =
1

16πG2

∫
M

d2x
√
|g|
[
XR− U(X)(∇X)2 − V (X)

]
− 1

8πG2

∫
∂M

dx
√
|γ| [XK − S(X)] + I(m)

I Dilaton X defined by its coupling to curvature R
I Kinetic term (∇X)2 contains coupling function U(X)
I Self-interaction potential V (X) leads to non-trivial geometries
I Gibbons–Hawking–York boundary term guarantees Dirichlet boundary

problem for metric
I Hamilton–Jacobi counterterm contains superpotential S(X)

S(X)2 = e−
∫X U(y) dy

∫ X

V (y)e
∫ y U(z) dz dy

and guarantees well-defined variational principle δI = 0
I Interesting option: couple 2D dilaton gravity to matter
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Why do we need holographic renormalization?

Holographic renormalization is the subtraction of appropriate
boundary terms from the action.

What is holographic renormalization?

Without holographic renormalization:

I Wrong black hole thermodynamics
I Wrong (typically divergent) boundary stress tensor
I Inconsistent theory (no classical limit)
I Unphysical divergences and finite parts of observables can be wrong
I Susskind, Witten ’98: in field theory: field theory UV divergences

(which need to be renormalized) correspond to IR divergences on the
gravity side if gauge/gravity duality exists

I DG, van Nieuwenhuizen ’09: SUSY at boundary requires unique
holographic counterterm, at least in 2 and 3 dimensions

I Variational principle ill-defined
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AdS2

... the simplest gravity model where the need for holographic renormalization arises!

Bulk action:

IB = −1

2

∫
M
d2x
√
g
[
X
(
R+

2

`2
)]

Variation with respect to scalar field X yields

R = − 2

`2

This means curvature is constant and negative, i.e., AdS2.
Variation with respect to metric g yields

∇µ∇νX − gµν�X + gµν
X

`2
= 0

Equations of motion above solved by

X = r , gµν dxµ dxν =
(r2

`2
−M

)
dt2 +

dr2

r2

`2
−M

There is an important catch, however: Boundary terms tricky!
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Boundary terms, Part I
Gibbons–Hawking–York boundary terms: quantum mechanical toy model

Let us start with an bulk Hamiltonian action

IB =

tf∫
ti

dt [−ṗq −H(q, p)]

Want to set up a Dirichlet boundary value problem q = fixed at ti, tf
Problem:

δIB = 0 requires q δp = 0 at boundary

Solution: add “Gibbons–Hawking–York” boundary term

IE = IB + IGHY , IGHY = pq|tfti

As expected IE =
tf∫
ti

[pq̇ −H(q, p)] is standard Hamiltonian action
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dt [−ṗq −H(q, p)]

Want to set up a Dirichlet boundary value problem q = fixed at ti, tf
Problem:

δIB = 0 requires q δp = 0 at boundary

Solution: add “Gibbons–Hawking–York” boundary term

IE = IB + IGHY , IGHY = pq|tfti

As expected IE =
tf∫
ti

[pq̇ −H(q, p)] is standard Hamiltonian action

D. Grumiller — Gravity in lower dimensions Holographic renormalization 18/33



Boundary terms, Part II
Gibbons–Hawking–York boundary terms in gravity — something still missing!

That was easy! In gravity the result is

IGHY = −
∫
∂M

dx
√
γ X K

where γ (K) is determinant (trace) of first (second) fundamental form.
Euclidean action with correct boundary value problem is

IE = IB + IGHY

The boundary lies at r = r0, with r0 →∞. Are we done?

No! Serious Problem! Variation of IE yields

δIE ∼ EOM + δX(boundary − term)− lim
r0→∞

∫
∂M

dt δγ

Asymptotic metric: γ = r2/`2 +O(1). Thus, δγ may be finite!

δIE 6= 0 for some variations that preserve boundary conditions!!!
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Boundary terms, Part III
Holographic renormalization: quantum mechanical toy model

Key observation: Dirichlet boundary problem not changed under

IE → Γ = IE − ICT = IEH + IGHY − ICT

with
ICT = S(q, t)|tf

Improved action:

Γ =

tf∫
ti

dt [−ṗq −H(q, p)] + pq|tfti − S(q, t)|tf

First variation (assuming p = ∂H/∂p):

δΓ =

(
p− ∂S(q, t)

∂q

)
δq

∣∣∣∣tf = 0?

Works if S(q, t) is Hamilton’s principal function!
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Boundary terms, Part IV
Holographic renormalization in AdS2 gravity

Hamilton’s principle function
I Solves the Hamilton–Jacobi equation

I Does not change boundary value problem when added to action
I Is capable to render δΓ = 0 even when δIE 6= 0
I Reasonable Ansatz: Holographic counterterm = Solution of

Hamilton–Jacobi equation!

In case of AdS2 gravity this Ansatz yields

ICT = −
∫
∂M

dx
√
γ
X

`

Action consistent with boundary value problem and variational principle:

Γ = −1

2

∫
M
d2x
√
g
[
X
(
R+

2

`2
)]
−
∫
∂M

dx
√
γ X K +

∫
∂M

dx
√
γ
X

`

δΓ = 0 for all variations that preserve the boundary conditions!
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Thermodynamics of Black Holes as a Simple Application

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] = IE [gcl, Xcl] + δIE + . . .

I The leading term is the ‘on-shell’ action.
I The linear term should vanish on solutions gcl and Xcl.

If nothing goes wrong get partition function

Z ∼ exp
(
− IE [gcl, Xcl]

)
× . . .

Accessibility of the semi-classical approximation requires

1. IE [gcl, Xcl]−∞

→ violated in AdS gravity!

2. δIE [gcl, Xcl; δg, δX]0

→ violated in AdS gravity!

Everything goes wrong with IE!

In particular, do not get correct free energy F = TIE = −∞ or entropy

S =∞
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Thermodynamics of Black Holes as a Simple Application

Consider small perturbation around classical solution

Γ[gcl + δg,Xcl + δX] = Γ[gcl, Xcl] + δΓ + . . .

I The leading term is the ‘on-shell’ action.
I The linear term should vanish on solutions gcl and Xcl.

If nothing goes wrong get partition function

Z ∼ exp
(
− Γ[gcl, Xcl]

)
× . . .

Accessibility of the semi-classical approximation requires

1. Γ[gcl, Xcl] > −∞ → ok in AdS gravity!
2. δΓ[gcl, Xcl; δg, δX] = 0 → ok in AdS gravity!

Everything works with Γ!

In particular, do get correct free energy F = TIE = M −TS and entropy

S = 2πX
∣∣
horizon

= Area/4
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Summary and algorithm of holographic renormalization
In any dimension, for any asymptotics — may arise also in quantum field theory!

I Start with bulk action IB

I Check consistency of boundary value problem
I If necessary, add boundary term IGHY
I Check consistency of variational principle
I If necessary, subtract holographic counterterm ICT
I Use improved action

Γ = IB + IGHY − ICT
for applications!

I Applications include thermodynamics from Euclidean path integral
and calculation of holographic stress tensor in AdS/CFT

I Straightforward applications in quantum field theory?

Possibly!

Holographic renormalization seems ubiquitous!
Dilaton gravity in two dimensions simplest gravity models where need
for holographic renormalization arises
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Outline

Why lower-dimensional gravity?

Which 2D theory?

Holographic renormalization

Which 3D theory?
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Attempt 1: Einstein–Hilbert
As simple as possible... but not simpler!

Let us start with the simplest attempt. Einstein-Hilbert action:

IEH =
1

16πG

∫
d3x
√
−g R

Equations of motion:
Rµν = 0

Ricci-flat and therefore Riemann-flat – locally trivial!

I No gravitons (recall: in D dimensions D(D − 3)/2 gravitons)

I No BHs

I Einstein-Hilbert in 3D is too simple for us!

Properties of Einstein-Hilbert
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Attempt 2: Topologically massive gravity
Deser, Jackiw and Templeton found a way to introduce gravitons!

Let us now add a gravitational Chern–Simons term. TMG action:

ITMG = IEH +
1

16πG

∫
d3x
√
−g 1

2µ
ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)
Equations of motion:

Rµν +
1

µ
Cµν = 0

with the Cotton tensor defined as

Cµν =
1

2
εµ
αβ∇αRβν + (µ↔ ν)

I Gravitons! Reason: third derivatives in Cotton tensor!

I No BHs

I TMG is slightly too simple for us!

Properties of TMG
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Attempt 3: Einstein–Hilbert–AdS
Bañados, Teitelboim and Zanelli (and Henneaux) taught us how to get 3D BHs

Add negative cosmological constant to Einstein-Hilbert action:

IΛEH =
1

16πG

∫
d3x
√
−g
(
R+

2

`2
)

Equations of motion:

Gµν = Rµν −
1

2
gµνR−

1

`2
gµν = 0

Particular solutions: BTZ BH with line-element

ds2BTZ = −
(r2 − r2+)(r2 − r2−)

`2r2
dt2 +

`2r2

(r2 − r2+)(r2 − r2−)
dr2 + r2

(
dφ− r+r−

`r2
dt
)2

I No gravitons

I Rotating BH solutions that asymptote to AdS3!

I Adding a negative cosmological constant produces BH solutions!

Properties of Einstein-Hilbert-AdS
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Cosmological topologically massive gravity
CTMG is a 3D theory with BHs and gravitons!

We want a 3D theory with gravitons and BHs and therefore take CTMG
action

ICTMG =
1

16πG

∫
d3x
√
−g
[
R+

2

`2
+

1

2µ
ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)]
Equations of motion:

Gµν +
1

µ
Cµν = 0

I Gravitons!

I BHs!

I CTMG is just perfect for us. Study this theory!

I ...see the talk on Wednesday!

Properties of CTMG
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Recent example: AdS2 holography
Two dimensions supposed to be the simplest dimension with geometry, and yet...

I extremal black holes universally include AdS2 factor
I funnily, AdS3 holography more straightforward
I study charged Jackiw–Teitelboim model as example

IJT =
α

2π

∫
d2x
√
−g

[
e−2φ

(
R+

8

L2

)
− L2

4
F 2

]

I Metric g has signature −,+ and Ricci-scalar R< 0 for AdS
I Maxwell field strength Fµν = 2E εµν dual to electric field E
I Dilaton φ has no kinetic term and no coupling to gauge field
I Cosmological constant Λ = − 8

L2 parameterized by AdS radius L
I Coupling constant α usually is positive
I δφ EOM: R = − 8

L2 ⇒ AdS2!
I δA EOM: ∇µFµν = 0 ⇒ E = constant
I δg EOM:

∇µ∇νe−2φ − gµν ∇2e−2φ+
4

L2
e−2φ gµν+

L2

2
Fµ

λ Fνλ−
L2

8
gµν F

2 = 0
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I Cosmological constant Λ = − 8

L2 parameterized by AdS radius L
I Coupling constant α usually is positive
I δφ EOM: R = − 8

L2 ⇒ AdS2!
I δA EOM: ∇µFµν = 0 ⇒ E = constant
I δg EOM:

∇µ∇νe−2φ − gµν ∇2e−2φ+
4

L2
e−2φ gµν+

L2

2
Fµ

λ Fνλ−
L2

8
gµν F

2 = 0
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Recent example: AdS2 holography
Two dimensions supposed to be the simplest dimension with geometry, and yet...

I extremal black holes universally include AdS2 factor
I funnily, AdS3 holography more straightforward
I study charged Jackiw–Teitelboim model as example
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Some surprising results
Hartman, Strominger = HS Castro, DG, Larsen, McNees = CGLM

I Holographic renormalization leads to boundary mass term (CGLM)

I ∼
∫

dx
√
|γ|mA2

Nevertheless, total action gauge invariant

I Boundary stress tensor transforms anomalously (HS)

(δξ + δλ)Ttt = 2Ttt∂tξ + ξ∂tTtt −
c

24π
L∂3

t ξ

where δξ + δλ is combination of diffeo- and gauge trafos that preserve
the boundary conditions (similarly: δλJt = − k

4πL∂tλ)
I Anomalous transformation above leads to central charge (HS, CGLM)

c = −24αe−2φ =
3

G2
=

3

2
kE2L2

I Positive central charge only for negative coupling constant α (CGLM)

α < 0
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