Flat Space Holography

Daniel Grumiller
Institute for Theoretical Physics
TU Wien

Swansea University March 2015

based on work w. Afshar, Bagchi, Basu, Detournay, Fareghbal, Gary, Riegler, Rosseel, Salzer, Sarkar, Schöller, Simon, ...

Outline

Motivations

Holography basics

Flat space holography

Outline

Motivations

Holography basics

Flat space holography

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)
- Holography
- Holographic principle realized in Nature? (yes/no)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)
- Holography
- Holographic principle realized in Nature? (yes/no)
- Quantum gravity via AdS/CFT? (define quantum gravity in AdS by constructing/postulating dual CFT)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)
- Holography
- Holographic principle realized in Nature? (yes/no)
- Quantum gravity via AdS/CFT? (define quantum gravity in AdS by constructing/postulating dual CFT)
- How general is holography? (non-unitary holography, higher spin holography, flat space holography, non-AdS holography, ...)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)
- Holography
- Holographic principle realized in Nature? (yes/no)
- Quantum gravity via AdS/CFT? (define quantum gravity in AdS by constructing/postulating dual CFT)
- How general is holography? (non-unitary holography, higher spin holography, flat space holography, non-AdS holography, ...)
- Applications
- Gauge gravity correspondence (plasmas, condensed matter, ...)

Specific motivation for 3D

Gravity in 3D is simpler than in higher dimensions

Specific motivation for 3D

Gravity in 3D is simpler than in higher dimensions

$$
\begin{aligned}
& \text { Simplicity is } \\
& \text { the ultimate } \\
& \text { sophistication }
\end{aligned}
$$

Goals of this talk

1. Review general aspects of holography in 3D

Goals of this talk

1. Review general aspects of holography in 3D
2. Discuss flat space holography

Goals of this talk

1. Review general aspects of holography in 3D
2. Discuss flat space holography
3. Generalize to higher spin holography

Goals of this talk

1. Review general aspects of holography in 3D
2. Discuss flat space holography
3. Generalize to higher spin holography
4. List selected open issues

Goals of this talk

1. Review general aspects of holography in 3D
2. Discuss flat space holography
3. Generalize to higher spin holography
4. List selected open issues

Address these issues in 3D!

Outline

Motivations

Holography basics

Flat space holography

Assumptions

Working assumptions:

- 3D

Assumptions

Working assumptions:

- 3D
- Restrict to "pure gravity" theories

Assumptions

Working assumptions:

- 3D
- Restrict to "pure gravity" theories
- Define quantum gravity by its dual field theory

Interesting dichotomy:

- Either dual field theory exists \rightarrow useful toy model for quantum gravity
- Or gravitational theory needs UV completion (within string theory) \rightarrow indication of inevitability of string theory

Assumptions

Working assumptions:

- 3D
- Restrict to "pure gravity" theories
- Define quantum gravity by its dual field theory

Interesting dichotomy:

- Either dual field theory exists \rightarrow useful toy model for quantum gravity
- Or gravitational theory needs UV completion (within string theory) \rightarrow indication of inevitability of string theory

This talk:

- Remain agnostic about dichotomy
- Focus on generic features of dual field theories that do not require string theory embedding

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D

Interesting generic constraints from CFT_{2} !
e.g. Hellerman '09, Hartman, Keller, Stoica '14

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)
- Simple microstate counting from $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)
- Simple microstate counting from $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
- Hawking-Page phase transition hot $\operatorname{AdS} \leftrightarrow$ BTZ

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)
- Simple microstate counting from $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
- Hawking-Page phase transition hot $\operatorname{AdS} \leftrightarrow$ BTZ
- Simple checks of Ryu-Takayanagi proposal

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)
- Simple microstate counting from $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
- Hawking-Page phase transition hot $\mathrm{AdS} \leftrightarrow$ BTZ
- Simple checks of Ryu-Takayanagi proposal

Caveat: while there are many string compactifications with AdS_{3} factor, applying holography just to AdS_{3} factor does not capture everything!

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle Example: Einstein gravity with Dirichlet boundary conditions

$$
I=-\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{3} x \sqrt{|g|}\left(R+\frac{2}{\ell^{2}}\right)
$$

with $\delta g=$ fixed at the boundary

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions Example: asymptotically AdS

$$
\mathrm{d} s^{2}=\mathrm{d} \rho^{2}+\left(e^{2 \rho / \ell} \gamma_{i j}^{(0)}+\gamma_{i j}^{(2)}+\ldots\right) \mathrm{d} x^{i} \mathrm{~d} x^{j}
$$

with $\delta \gamma^{(0)}=0$ for $\rho \rightarrow \infty$

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's

- Find and classify all constraints
- Construct canonical gauge generators
- Add boundary terms and get (variation of) canonical charges
- Check integrability of canonical charges
- Check finiteness of canonical charges
- Check conservation (in time) of canonical charges
- Calculate Dirac bracket algebra of canonical charges

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's

- Find and classify all constraints
- Construct canonical gauge generators
- Add boundary terms and get (variation of) canonical charges
- Check integrability of canonical charges
- Check finiteness of canonical charges
- Check conservation (in time) of canonical charges
- Calculate Dirac bracket algebra of canonical charges

Example: Brown-Henneaux analysis for 3D Einstein gravity

$$
\begin{gathered}
\{Q[\varepsilon], Q[\eta]\}=\delta_{\varepsilon} Q[\eta] \\
Q[\varepsilon] \sim \oint \mathrm{d} \varphi \mathcal{L}(\varphi) \varepsilon(\varphi) \\
\delta_{\varepsilon} \mathcal{L}=\mathcal{L} \varepsilon+2 \mathcal{L} \varepsilon^{\prime}+\frac{\ell}{16 \pi G_{N}} \varepsilon^{\prime \prime \prime}
\end{gathered}
$$

Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges Example: Two copies of Virasoro algebra

$$
\left[\mathcal{L}_{n}, \mathcal{L}_{m}\right]=(n-m) \mathcal{L}_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0}
$$

with Brown-Henneaux central charge

$$
c=\frac{3 \ell}{2 G_{N}}
$$

Reminder: ASA = quotient algebra of asymptotic symmetries by 'trivial' asymptotic symmetries with zero canonical charges

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA

Example: semi-classical ASA in spin-3 gravity (Henneaux, Rey '10; Campoleoni, Pfenninger, Fredenhagen, Theisen '10)

$$
\left[W_{n}, W_{m}\right]=\frac{16}{5 c} \sum_{p} L_{p} L_{n+m-p}+\ldots
$$

quantum ASA

$$
\left[W_{n}, W_{m}\right]=\frac{16}{5 c+22} \sum_{p}: L_{p} L_{n+m-p}:+\ldots
$$

Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA

Example:

[^0]Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Example: Monster CFT in (flat space) chiral gravity

Witten '07

Li, Song \& Strominger '08
Bagchi, Detournay \& DG '12

$$
Z(q)=J(q)=\frac{1}{q}+(1+196883) q+\mathcal{O}\left(q^{2}\right)
$$

Note: $\ln 196883 \approx 12.2=4 \pi+$ quantum corrections

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify Examples: too many!

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Goal of this talk:

Apply algorithm above to flat space holography in 3D gravity theories

Outline

Motivations

Holography basics

Flat space holography

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)
if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- This is nothing but the BMS_{3} algebra (or $\mathrm{GCA}_{2}, \mathrm{URCA}_{2}, \mathrm{CCA}_{2}$)!

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- This is nothing but the BMS_{3} algebra (or $\mathrm{GCA}_{2}, \mathrm{URCA}_{2}, \mathrm{CCA}_{2}$)!
- Example where it does not work easily: boundary conditions!

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- This is nothing but the BMS_{3} algebra (or $\mathrm{GCA}_{2}, \mathrm{URCA}_{2}, \mathrm{CCA}_{2}$)!
- Example where it does not work easily: boundary conditions!
- Example where it does not work at all: highest weight conditions!

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of 10^{4} AdS/CFT papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)
if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)
- extrapolate from dS: should be non-unitary (?)

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)
- extrapolate from dS: should be non-unitary (?)
- directly in flat space: both options realized, depending on details of model

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)
- extrapolate from dS: should be non-unitary (?)
- directly in flat space: both options realized, depending on details of model

Many open issues in flat space holography!

Next few slides: mention a couple of recent results

Overview of selected recent results

- Applying algorithm just described to flat space theories

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity
- Cosmic evolution from phase transition

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity
- Cosmic evolution from phase transition
- (Holographic) entanglement entropy

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity
- Cosmic evolution from phase transition
- (Holographic) entanglement entropy
- Flat space higher spin gravity

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity
- Cosmic evolution from phase transition
- (Holographic) entanglement entropy
- Flat space higher spin gravity
- Unitarity of dual field theory

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity
- Cosmic evolution from phase transition
- (Holographic) entanglement entropy
- Flat space higher spin gravity
- Unitarity of dual field theory
- Adding chemical potentials

Apply algorithm just described to flat space theories Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle Topologically massive gravity with mixed boundary conditions

$$
I=I_{\mathrm{EH}}+\frac{1}{32 \pi G \mu} \int \mathrm{~d}^{3} x \sqrt{-g} \varepsilon^{\lambda \mu \nu} \Gamma_{\lambda \sigma}^{\rho}\left(\partial_{\mu} \Gamma_{\nu \rho}^{\sigma}+\frac{2}{3} \Gamma_{\mu \tau}^{\sigma} \Gamma_{\nu \rho}^{\tau}\right)
$$

with $\delta g=$ fixed and $\delta K_{L}=$ fixed at the boundary
Deser, Jackiw \& Templeton '82

Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions asymptotically flat adapted to lightlike infinity

$$
(\varphi \sim \varphi+2 \pi)
$$

$$
\begin{aligned}
& \mathrm{d} \bar{s}^{2}=-\mathrm{d} u^{2}-2 \mathrm{~d} u \mathrm{~d} r+r^{2} \mathrm{~d} \varphi^{2} \\
& g_{u u}=h_{u u}+O\left(\frac{1}{r}\right) \\
& g_{u r}=-1+h_{u r} / r+O\left(\frac{1}{r^{2}}\right) \\
& g_{u \varphi}=h_{u \varphi}+O\left(\frac{1}{r}\right) \\
& g_{r r}=h_{r r} / r^{2}+O\left(\frac{1}{r^{3}}\right) \\
& g_{r \varphi}=h_{1}(\varphi)+h_{r \varphi} / r+O\left(\frac{1}{r^{2}}\right) \\
& g_{\varphi \varphi}=r^{2}+\left(h_{2}(\varphi)+u h_{3}(\varphi)\right) r+O(1)
\end{aligned}
$$

Barnich \& Compere '06
Bagchi, Detournay \& DG '12

Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's Obtain canonical boundary charges

$$
\begin{aligned}
& Q_{M_{n}}=\frac{1}{16 \pi G} \int \mathrm{~d} \varphi e^{i n \varphi}\left(h_{u u}+h_{3}\right) \\
& Q_{L_{n}}= \frac{1}{16 \pi G \mu} \int \mathrm{~d} \varphi e^{i n \varphi}\left(h_{u u}+\partial_{u} h_{u r}+\frac{1}{2} \partial_{u}^{2} h_{r r}+h_{3}\right) \\
&+ \frac{1}{16 \pi G} \int \mathrm{~d} \varphi e^{i n \varphi}\left(i n u h_{u u}+i n h_{u r}+2 h_{u \varphi}+\partial_{u} h_{r \varphi}\right. \\
&\left.\quad-\left(n^{2}+h_{3}\right) h_{1}-i n h_{2}-i n \partial_{\varphi} h_{1}\right)
\end{aligned}
$$

Bagchi, Detournay \& DG '12

Apply algorithm just described to flat space theories

Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

with central charges

$$
c_{L}=\frac{3}{\mu G} \quad c_{M}=\frac{3}{G}
$$

Note:

- $c_{L}=0$ in Einstein gravity
- $c_{M}=0$ in conformal Chern-Simons gravity $\left(\mu \rightarrow 0, \mu G=\frac{1}{8 k}\right)$ Flat space chiral gravity!

Apply algorithm just described to flat space theories Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA

Trivial here

Apply algorithm just described to flat space theories Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA

- Straightforward in flat space chiral gravity
- Difficult/impossible otherwise

Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Monster CFT in flat space chiral gravity
Witten '07
Li, Song \& Strominger '08
Bagchi, Detournay \& DG '12

$$
Z(q)=J(q)=\frac{1}{q}+(1+196883) q+\mathcal{O}\left(q^{2}\right)
$$

Note: $\ln 196883 \approx 12.2=4 \pi+$ quantum corrections

Apply algorithm just described to flat space theories Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify We are happy!

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:

Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)
- Gaps in spectra match

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)
- Gaps in spectra match
- Microscopic counting of $S_{\text {FSC }}$ reproduced by chiral Cardy formula

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)
- Gaps in spectra match
- Microscopic counting of $S_{\text {FSC }}$ reproduced by chiral Cardy formula
- No issues with logarithmic modes/log CFTs

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)
- Gaps in spectra match
- Microscopic counting of $S_{\text {FSC }}$ reproduced by chiral Cardy formula
- No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

$$
Z(q)=J(q)=\frac{1}{q}+196884 q+\mathcal{O}\left(q^{2}\right)
$$

Cosmic evolution from phase transition
Flat space version of Hawking-Page phase transition
Hot flat space $\quad(\varphi \sim \varphi+2 \pi)$

$$
\mathrm{d} s^{2}= \pm \mathrm{d} t^{2}+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \varphi^{2}
$$

Cosmic evolution from phase transition
Flat space version of Hawking-Page phase transition
Hot flat space

$$
(\varphi \sim \varphi+2 \pi)
$$

$$
\mathrm{d} s^{2}= \pm \mathrm{d} t^{2}+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \varphi^{2}
$$

$$
\mathrm{d} s^{2}= \pm \mathrm{d} \tau^{2}+\frac{(E \tau)^{2} \mathrm{~d} x^{2}}{1+(E \tau)^{2}}+\left(1+(E \tau)^{2}\right)\left(\mathrm{d} y+\frac{(E \tau)^{2}}{1+(E \tau)^{2}} \mathrm{~d} x\right)^{2}
$$

Flat space cosmology

$$
\left(y \sim y+2 \pi r_{0}\right)
$$

Bagchi, Detournay, DG \& Simon '13

Flat space cosmologies (Cornalba \& Costa '02)

- Start with BTZ in AdS:

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{R_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

Flat space cosmologies (Cornalba \& Costa '02)

- Start with BTZ in AdS:

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{R_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- Consider region between the two horizons $r_{-}<r<R_{+}$

Flat space cosmologies (Cornalba \& Costa '02)

- Start with BTZ in AdS:

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{R_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- Consider region between the two horizons $r_{-}<r<R_{+}$
- Take the $\ell \rightarrow \infty$ limit (with $R_{+}=\ell \hat{r}_{+}$and $r_{-}=r_{0}$)

$$
\mathrm{d} s^{2}=\hat{r}_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} t^{2}-\frac{r^{2} \mathrm{~d} r^{2}}{\hat{r}_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{\hat{r}_{+} r_{0}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

Flat space cosmologies (Cornalba \& Costa '02)

- Start with BTZ in AdS:

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{R_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- Consider region between the two horizons $r_{-}<r<R_{+}$
- Take the $\ell \rightarrow \infty$ limit (with $R_{+}=\ell \hat{r}_{+}$and $r_{-}=r_{0}$)

$$
\mathrm{d} s^{2}=\hat{r}_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} t^{2}-\frac{r^{2} \mathrm{~d} r^{2}}{\hat{r}_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{\hat{r}_{+} r_{0}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

- Go to Euclidean signature $\left(t=i \tau_{E}, \hat{r}_{+}=-i r_{+}\right)$

$$
\mathrm{d} s^{2}=r_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} \tau_{\mathrm{E}}^{2}+\frac{r^{2} \mathrm{~d} r^{2}}{r_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{0}}{r^{2}} \mathrm{~d} \tau_{E}\right)^{2}
$$

Flat space cosmologies (Cornalba \& Costa '02)

- Start with BTZ in AdS:

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{R_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- Consider region between the two horizons $r_{-}<r<R_{+}$
- Take the $\ell \rightarrow \infty$ limit (with $R_{+}=\ell \hat{r}_{+}$and $r_{-}=r_{0}$)

$$
\mathrm{d} s^{2}=\hat{r}_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} t^{2}-\frac{r^{2} \mathrm{~d} r^{2}}{\hat{r}_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{\hat{r}_{+} r_{0}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

- Go to Euclidean signature ($t=i \tau_{E}, \hat{r}_{+}=-i r_{+}$)

$$
\mathrm{d} s^{2}=r_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} \tau_{\mathrm{E}}^{2}+\frac{r^{2} \mathrm{~d} r^{2}}{r_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{0}}{r^{2}} \mathrm{~d} \tau_{E}\right)^{2}
$$

- Note peculiarity: no conical singularity, but asymptotic conical defect!

Flat space cosmologies (Cornalba \& Costa '02)

- Start with BTZ in AdS:

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{R_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- Consider region between the two horizons $r_{-}<r<R_{+}$
- Take the $\ell \rightarrow \infty$ limit (with $R_{+}=\ell \hat{r}_{+}$and $r_{-}=r_{0}$)

$$
\mathrm{d} s^{2}=\hat{r}_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} t^{2}-\frac{r^{2} \mathrm{~d} r^{2}}{\hat{r}_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{\hat{r}_{+} r_{0}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

- Go to Euclidean signature ($t=i \tau_{E}, \hat{r}_{+}=-i r_{+}$)

$$
\mathrm{d} s^{2}=r_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} \tau_{\mathrm{E}}^{2}+\frac{r^{2} \mathrm{~d} r^{2}}{r_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{0}}{r^{2}} \mathrm{~d} \tau_{E}\right)^{2}
$$

- Note peculiarity: no conical singularity, but asymptotic conical defect!

Question we want to address:
Is FSC or HFS the preferred Euclidean saddle?

Euclidean path integral

Evaluate Euclidean partition function in semi-classical limit

$$
Z(T, \Omega)=\int \mathcal{D} g e^{-\Gamma[g]}=\sum_{g_{c}} e^{-\Gamma\left[g_{c}(T, \Omega)\right]} \times Z_{\text {fluct }}
$$

boundary conditions specified by temperature T and angular velocity Ω

Euclidean path integral

Evaluate Euclidean partition function in semi-classical limit

$$
Z(T, \Omega)=\int \mathcal{D} g e^{-\Gamma[g]}=\sum_{g_{c}} e^{-\Gamma\left[g_{c}(T, \Omega)\right]} \times Z_{\text {fluct. }}
$$

boundary conditions specified by temperature T and angular velocity Ω
Two Euclidean saddle points in same ensemble if

- same temperature $T=1 / \beta$ and angular velocity Ω
- obey flat space boundary conditions
- solutions without conical singularities

Euclidean path integral

Evaluate Euclidean partition function in semi-classical limit

$$
Z(T, \Omega)=\int \mathcal{D} g e^{-\Gamma[g]}=\sum_{g_{c}} e^{-\Gamma\left[g_{c}(T, \Omega)\right]} \times Z_{\text {fluct. }}
$$

boundary conditions specified by temperature T and angular velocity Ω
Two Euclidean saddle points in same ensemble if

- same temperature $T=1 / \beta$ and angular velocity Ω
- obey flat space boundary conditions
- solutions without conical singularities

Periodicities fixed:

$$
\left(\tau_{E}, \varphi\right) \sim\left(\tau_{E}+\beta, \varphi+\beta \Omega\right) \sim\left(\tau_{E}, \varphi+2 \pi\right)
$$

Results

On-shell action:

$$
\Gamma=-\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{3} x \sqrt{g} R-\underbrace{\frac{1}{16 \pi G_{N}}}_{\frac{1}{2} \mathrm{GHY}!} \int \mathrm{d}^{2} x \sqrt{\gamma} K
$$

Results

On-shell action:

$$
\Gamma=-\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{3} x \sqrt{g} R-\underbrace{\frac{1}{16 \pi G_{N}}}_{\frac{1}{2} \mathrm{GHY}!} \int \mathrm{d}^{2} x \sqrt{\gamma} K
$$

Free energy:

$$
F_{\mathrm{HFS}}=-\frac{1}{8 G_{N}} \quad F_{\mathrm{FSC}}=-\frac{r_{+}}{8 G_{N}}
$$

Results

On-shell action:

$$
\Gamma=-\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{3} x \sqrt{g} R-\underbrace{\frac{1}{16 \pi G_{N}}}_{\frac{1}{2} \mathrm{GHY}!} \int \mathrm{d}^{2} x \sqrt{\gamma} K
$$

Free energy:

$$
F_{\mathrm{HFS}}=-\frac{1}{8 G_{N}} \quad F_{\mathrm{FSC}}=-\frac{r_{+}}{8 G_{N}}
$$

- $r_{+}>1$ FSC dominant saddle
- $r_{+}<1$: HFS dominant saddle

Critical temperature:

$$
T_{c}=\frac{1}{2 \pi r_{0}}=\frac{\Omega}{2 \pi}
$$

HFS "melts" into FSC at $T>T_{c}$

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{L}}{6} \ln \frac{\ell_{x}}{a}}_{\text {like CFT }}+\underbrace{\frac{c_{M}}{6} \frac{\ell_{y}}{\ell_{x}}}_{\text {like grav anomaly }}
$$

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{L}}{6} \ln \frac{\ell_{x}}{a}}_{\text {like CFT }}+\underbrace{\frac{c_{M}}{6} \frac{\ell_{y}}{\ell_{x}}}_{\text {like grav anomaly }}
$$

with

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0}
\end{aligned}
$$

and

- ℓ_{x} : spatial distance
- ℓ_{y} : temporal distance
- a : UV cutoff (lattice size)

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{L}}{6} \ln \frac{\ell_{x}}{a}}_{\text {like } \mathrm{CFT}}
$$

- flat space chiral gravity: $c_{L} \neq 0, c_{M}=0$

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{M}}{6} \frac{\ell_{y}}{\ell_{x}}}_{\text {like grav anomaly }}
$$

- flat space chiral gravity: $c_{L} \neq 0, c_{M}=0$
- flat space Einstein gravity: $c_{L}=0, c_{M} \neq 0$

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{L}}{6} \ln \frac{\ell_{x}}{a}}_{\text {like CFT }}+\underbrace{\frac{c_{M}}{6} \frac{\ell_{y}}{\ell_{x}}}_{\text {like grav anomaly }}
$$

- flat space chiral gravity: $c_{L} \neq 0, c_{M}=0$
- flat space Einstein gravity: $c_{L}=0, c_{M} \neq 0$

Same results obtained holographically!

- Using methods similar to Ammon, Castro Iqbal '13, de Boer, Jottar '13, Castro, Detournay, Iqbal, Perlmutter '14
- geodesics \Rightarrow Wilson lines

Flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

isl(3) algebra (spin 3 extension of global part of BMS/GCA algebra)

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m} \\
{\left[L_{n}, U_{m}\right] } & =(2 n-m) U_{n+m} \\
{\left[M_{n}, U_{m}\right]=\left[L_{n}, V_{m}\right] } & =(2 n-m) V_{n+m} \\
{\left[U_{n}, U_{m}\right] } & =(n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m} \\
{\left[U_{n}, V_{m}\right] } & =(n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}
\end{aligned}
$$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

- Same type of boundary conditions as for spin 2:

$$
\mathcal{A}(r, t, \varphi)=b^{-1}(r)(\mathrm{d}+a(t, \varphi)+o(1)) b(r)
$$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

- Same type of boundary conditions as for spin 2 :

$$
\mathcal{A}(r, t, \varphi)=b^{-1}(r)(\mathrm{d}+a(t, \varphi)+o(1)) b(r)
$$

- Flat space boundary conditions: $b(r)=\exp \left(\frac{1}{2} r M_{-1}\right)$ and

$$
\begin{aligned}
a(t, \varphi)= & \left(M_{1}-M(\varphi) M_{-1}-V(\varphi) V_{-2}\right) \mathrm{d} t \\
& +\left(L_{1}-M(\varphi) L_{-1}-V(\varphi) U_{-2}-L(\varphi) M_{-1}-Z(\varphi) V_{-2}\right) \mathrm{d} \varphi
\end{aligned}
$$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

- Same type of boundary conditions as for spin 2 :

$$
\mathcal{A}(r, t, \varphi)=b^{-1}(r)(\mathrm{d}+a(t, \varphi)+o(1)) b(r)
$$

- Flat space boundary conditions: $b(r)=\exp \left(\frac{1}{2} r M_{-1}\right)$ and

$$
\begin{aligned}
a(t, \varphi)= & \left(M_{1}-M(\varphi) M_{-1}-V(\varphi) V_{-2}\right) \mathrm{d} t \\
& +\left(L_{1}-M(\varphi) L_{-1}-V(\varphi) U_{-2}-L(\varphi) M_{-1}-Z(\varphi) V_{-2}\right) \mathrm{d} \varphi
\end{aligned}
$$

- Spin 3 charges:

$$
Q\left[\varepsilon_{M}, \varepsilon_{L}, \varepsilon_{V}, \varepsilon_{U}\right] \sim \oint\left(\varepsilon_{M}(\varphi) M(\varphi)+\varepsilon_{L}(\varphi) L(\varphi)+\varepsilon_{V}(\varphi) V(\varphi)+\varepsilon_{U}(\varphi) U(\varphi)\right)
$$

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ' 13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel '13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra
- Obtain new type of W-algebra as extension of BMS ("BMW")

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]=} & (n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right]=} & (n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[U_{n}, U_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{192}{c_{M}}(n-m) \Lambda_{n+m} \\
& -\frac{96\left(c_{L}+\frac{44}{5}\right)}{c_{M}^{2}}(n-m) \Theta_{n+m}+\frac{c_{L}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
{\left[U_{n}, V_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}+\frac{96}{c_{M}}(n-m) \Theta_{n+m} \\
& +\frac{c_{M}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
\Lambda_{n}= & \sum_{p}: L_{p} M_{n-p}:-\frac{3}{10}(n+2)(n+3) M_{n} \quad \Theta_{n}=\sum_{p} M_{p} M_{n-p}
\end{aligned}
$$

other commutators as in $\operatorname{isl}(3)$ with $n \in \mathbb{Z}$

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel '13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra
- Obtain new type of W-algebra as extension of BMS ("BMW")

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]=} & (n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right]=} & (n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[U_{n}, U_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{192}{c_{M}}(n-m) \Lambda_{n+m} \\
& -\frac{96\left(c_{L}+\frac{44}{5}\right)}{c_{M}^{2}}(n-m) \Theta_{n+m}+\frac{c_{L}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
{\left[U_{n}, V_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}+\frac{96}{c_{M}}(n-m) \Theta_{n+m} \\
& +\frac{c_{M}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0}
\end{aligned}
$$

- Note quantum shift and poles in central terms!

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel '13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra
- Obtain new type of W-algebra as extension of BMS ("BMW")

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]=} & (n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right]=} & (n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[U_{n}, U_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{192}{c_{M}}(n-m) \Lambda_{n+m} \\
& -\frac{96\left(c_{L}+\frac{44}{5}\right)}{c_{M}^{2}}(n-m) \Theta_{n+m}+\frac{c_{L}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
{\left[U_{n}, V_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}+\frac{96}{c_{M}}(n-m) \Theta_{n+m} \\
& +\frac{c_{M}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0}
\end{aligned}
$$

- Note quantum shift and poles in central terms!
- Analysis generalizes to flat space contractions of other W-algebras

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14
Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Limit $c_{M} \rightarrow 0$ requires further contraction: $U_{n} \rightarrow c_{M} U_{n}$

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Limit $c_{M} \rightarrow 0$ requires further contraction: $U_{n} \rightarrow c_{M} U_{n}$ Doubly contracted algebra has unitary representations:

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m} \\
{\left[L_{n}, U_{m}\right] } & =(2 n-m) U_{n+m} \\
{\left[M_{n}, U_{m}\right]=\left[L_{n}, V_{m}\right] } & =(2 n-m) V_{n+m} \\
{\left[U_{n}, U_{m}\right] } & \propto\left[U_{n}, V_{m}\right]=96(n-m) \sum_{p} M_{p} M_{n-p}
\end{aligned}
$$

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Limit $c_{M} \rightarrow 0$ requires further contraction: $U_{n} \rightarrow c_{M} U_{n}$ Doubly contracted algebra has unitary representations:

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m} \\
{\left[L_{n}, U_{m}\right] } & =(2 n-m) U_{n+m} \\
{\left[M_{n}, U_{m}\right]=\left[L_{n}, V_{m}\right] } & =(2 n-m) V_{n+m} \\
{\left[U_{n}, U_{m}\right] } & \propto\left[U_{n}, V_{m}\right]=96(n-m) \sum_{p} M_{p} M_{n-p}
\end{aligned}
$$

Higher spin states decouple and become null states!

Unitarity in flat space

Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Unitarity in flat space
Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Example:
Flat space chiral gravity
Bagchi, Detournay, DG, 1208.1658

Unitarity in flat space
Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Example:

Minimal model holography
Gaberdiel, Gopakumar, 1011.2986, 1207.6697

Unitarity in flat space
Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Example:

Flat space higher spin gravity (Galilean W_{3} algebra)
Afshar, Bagchi, Fareghbal, DG and Rosseel, 1307.4768
Gonzalez, Matulich, Pino and Troncoso, 1307.5651

Unitarity in flat space

Generic flat space W-algebras DG, Riegler, Rosseel '14

1. NO-GO:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

> Compatible with "spirit" of various no-go results in higher dimensions!

Unitarity in flat space

Generic flat space W-algebras DG, Riegler, Rosseel '14

1. NO-GO:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Compatible with "spirit" of various no-go results in higher dimensions!

2. YES-GO:

There is (at least) one counter-example, namely a Vasiliev-type of theory, where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...

Unitarity in flat space
Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!

Unitarity in flat space
Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!
- If it exists, this must be its asymptotic symmetry algebra:

$$
\begin{aligned}
{\left[\mathcal{V}_{m}^{i}, \mathcal{V}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{V}_{m+n}^{i+j-2 r}+c_{\mathcal{V}}^{i}(m) \delta^{i j} \delta_{m+n, 0} \\
{\left[\mathcal{V}_{m}^{i}, \mathcal{W}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{W}_{m+n}^{i+j-2 r} \quad\left[\mathcal{W}_{m}^{i}, \mathcal{W}_{n}^{j}\right]=0
\end{aligned}
$$

where

$$
c_{\mathcal{V}}^{i}(m)=\#(i, m) \times c \quad \text { and } \quad c=-\bar{c}
$$

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!
- If it exists, this must be its asymptotic symmetry algebra:

$$
\begin{aligned}
{\left[\mathcal{V}_{m}^{i}, \mathcal{V}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{V}_{m+n}^{i+j-2 r}+c_{\mathcal{V}}^{i}(m) \delta^{i j} \delta_{m+n, 0} \\
{\left[\mathcal{V}_{m}^{i}, \mathcal{W}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{W}_{m+n}^{i+j-2 r} \quad\left[\mathcal{W}_{m}^{i}, \mathcal{W}_{n}^{j}\right]=0
\end{aligned}
$$

where

$$
c_{\mathcal{V}}^{i}(m)=\#(i, m) \times c \quad \text { and } \quad c=-\bar{c}
$$

- Vacuum descendants $\mathcal{W}_{m}^{i}|0\rangle$ are null states for all i and m !

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!
- If it exists, this must be its asymptotic symmetry algebra:

$$
\begin{aligned}
{\left[\mathcal{V}_{m}^{i}, \mathcal{V}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{V}_{m+n}^{i+j-2 r}+c_{\mathcal{V}}^{i}(m) \delta^{i j} \delta_{m+n, 0} \\
{\left[\mathcal{V}_{m}^{i}, \mathcal{W}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{W}_{m+n}^{i+j-2 r} \quad\left[\mathcal{W}_{m}^{i}, \mathcal{W}_{n}^{j}\right]=0
\end{aligned}
$$

where

$$
c_{\mathcal{V}}^{i}(m)=\#(i, m) \times c \quad \text { and } \quad c=-\bar{c}
$$

- Vacuum descendants $\mathcal{W}_{m}^{i}|0\rangle$ are null states for all i and m !
- AdS parent theory: no trace anomaly, but gravitational anomaly (Like in conformal Chern-Simons gravity \rightarrow Vasiliev type analogue?)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!

Line-element with spin-2 and spin-3 chemical potentials:

$$
\begin{gathered}
g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\left(r^{2}\left(\mu_{\mathrm{L}}^{2}-4 \mu_{\mathrm{U}}^{\prime \prime} \mu_{\mathrm{U}}+3 \mu_{\mathrm{U}}^{\prime 2}+4 \mathcal{M} \mu_{\mathrm{U}}^{2}\right)+r g_{u u}^{(r)}+g_{u u}^{(0)}+g_{u u}^{\left(0^{\prime}\right)}\right) \mathrm{d} u^{2}+ \\
\left(r^{2} \mu_{\mathrm{L}}-r \mu_{\mathrm{M}}^{\prime}+\mathcal{N}\left(1+\mu_{\mathrm{M}}\right)+8 \mathcal{Z} \mu_{\mathrm{V}}\right) 2 \mathrm{~d} u \mathrm{~d} \varphi-\left(1+\mu_{\mathrm{M}}\right) 2 \mathrm{~d} r \mathrm{~d} u+r^{2} \mathrm{~d} \varphi^{2} \\
g_{u u}^{(0)}=\mathcal{M}\left(1+\mu_{\mathrm{M}}\right)^{2}+2\left(1+\mu_{\mathrm{M}}\right)\left(\mathcal{N} \mu_{\mathrm{L}}+12 \mathcal{V}_{\mu \mathrm{V}}+16 \mathcal{Z}_{\left.\mu_{\mathrm{U}}\right)}\right. \\
+16 \mathcal{Z} \mu_{\mathrm{L}} \mu_{\mathrm{V}}+\frac{4}{3}\left(\mathcal{M}^{2} \mu_{\mathrm{V}}^{2}+4 \mathcal{M} \mu_{\mathrm{U}} \mu_{\mathrm{V}}+\mathcal{N}^{2} \mu_{\mathrm{U}}^{2}\right)
\end{gathered}
$$

Spin-3 field with same chemical potentials:

$$
\begin{aligned}
& \Phi_{\mu \nu \lambda} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu} \mathrm{d} x^{\lambda}=\Phi_{u u u} \mathrm{~d} u^{3}+\Phi_{r u u} \mathrm{~d} r \mathrm{~d} u^{2}+\Phi_{u u \varphi} \mathrm{~d} u^{2} \mathrm{~d} \varphi-\left(2 \mu_{\mathrm{U}} r^{2}-r \mu_{\mathrm{V}}^{\prime}+2 \mathcal{N} \mu_{\mathrm{V}}\right) \mathrm{d} r \mathrm{~d} u \mathrm{~d} \varphi \\
& \quad+\mu_{\mathrm{V}} \mathrm{~d} r^{2} \mathrm{~d} u-\left(\mu_{\mathrm{U}}^{\prime} r^{3}-\frac{1}{3} r^{2}\left(\mu_{\mathrm{V}}^{\prime \prime}-\mathcal{M} \mu_{\mathrm{V}}+4 \mathcal{N} \mu_{\mathrm{U}}\right)+r \mathcal{N} \mu_{\mathrm{V}}^{\prime}-\mathcal{N}^{2} \mu_{\mathrm{V}}\right) \mathrm{d} u \mathrm{~d} \varphi^{2} \\
& \Phi_{u u u}= r^{2}\left[2\left(1+\mu_{\mathrm{M}}\right) \mu_{\mathrm{U}}\left(\mathcal{M} \mu_{\mathrm{L}}-4 \mathcal{V} \mu_{\mathrm{U}}\right)-\frac{1}{3} \mu_{\mathrm{L}}^{2}\left(\mathcal{M} \mu_{\mathrm{V}}-4 \mathcal{N} \mu_{\mathrm{U}}\right)+16 \mu_{\mathrm{L}} \mu_{\mathrm{U}}\left(\mathcal{V} \mu_{\mathrm{V}}+\mathcal{Z} \mu_{\mathrm{U}}\right)-\frac{4}{3} \mathcal{M} \mu_{\mathrm{U}}^{2}\left(\mathcal{M} \mu_{\mathrm{V}}\right.\right. \\
&+\left.\left.2 \mathcal{N} \mu_{\mathrm{U}}\right)\right]+2 \mathcal{V}\left(1+\mu_{\mathrm{M}}\right)^{3}+\frac{2}{3}\left(1+\mu_{\mathrm{M}}\right)^{2}\left(6 \mathcal{Z} \mu_{\mathrm{L}}+\mathcal{M}^{2} \mu_{\mathrm{V}}+2 \mathcal{M} \mathcal{N} \mu_{\mathrm{U}}\right)+16 \mu_{\mathrm{L}} \mu_{\mathrm{V}}^{2}\left(\mathcal{N} \mathcal{V}-\frac{1}{3} \mathcal{M} \mathcal{Z}\right) \\
&+ \frac{2}{3}\left(1+\mu_{\mathrm{M}}\right)\left(\left(\mathcal{N} \mu_{\mathrm{L}}+16 \mathcal{Z} \mu_{\mathrm{U}}\right)\left(2 \mathcal{M} \mu_{\mathrm{V}}+\mathcal{N} \mu_{\mathrm{U}}\right)+12 \mathcal{M} \mathcal{V} \mu_{\mathrm{V}}^{2}\right)+\frac{64}{3} \mathcal{Z} \mu_{\mathrm{U}} \mu_{\mathrm{V}}\left(\mathcal{N} \mu_{\mathrm{L}}+12 \mathcal{V} \mu_{\mathrm{V}}+12 \mathcal{Z} \mu_{\mathrm{U}}\right) \\
&+\mathcal{N}^{2} \mu_{\mathrm{L}}^{2} \mu_{\mathrm{V}}+64 \mathcal{V}^{2} \mu_{\mathrm{V}}^{3}-\frac{8}{27}\left(\mathcal{M}^{3} \mu_{\mathrm{V}}^{3}-\mathcal{N}^{3} \mu_{\mathrm{U}}^{3}\right)-\frac{4}{9} \mathcal{M} \mathcal{N} \mu_{\mathrm{U}} \mu_{\mathrm{V}}\left(4 \mathcal{M} \mu_{\mathrm{V}}+5 \mathcal{N} \mu_{\mathrm{U}}\right)+\sum_{n=0}^{3} r^{n} \Phi_{u u u}^{\left(r_{u}^{n}\right)}
\end{aligned}
$$

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Selected open issues

We have answered an ϵ of the open questions.

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s:

- further checks of flat space chiral gravity (2-, 3-point correlators, semi-classical partition function, ...)

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s:

- further checks of flat space chiral gravity (2-, 3-point correlators, semi-classical partition function, ...)
- existence of flat space chiral higher spin gravity?

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s:

- further checks of flat space chiral gravity (2-, 3-point correlators, semi-classical partition function, ...)
- existence of flat space chiral higher spin gravity?
- flat space local quantum quench? (Nozaki, Numasawa, Takayanagi '13)

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s:

- further checks of flat space chiral gravity (2-, 3-point correlators, semi-classical partition function, ...)
- existence of flat space chiral higher spin gravity?
- flat space local quantum quench? (Nozaki, Numasawa, Takayanagi '13)
- (holographic) entanglement entropy in other non-CFT contexts?

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s:

- further checks of flat space chiral gravity (2-, 3-point correlators, semi-classical partition function, ...)
- existence of flat space chiral higher spin gravity?
- flat space local quantum quench? (Nozaki, Numasawa, Takayanagi '13)
- (holographic) entanglement entropy in other non-CFT contexts?
- other non-AdS holography examples?

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s:

- further checks of flat space chiral gravity (2-, 3-point correlators, semi-classical partition function, ...)
- existence of flat space chiral higher spin gravity?
- flat space local quantum quench? (Nozaki, Numasawa, Takayanagi '13)
- (holographic) entanglement entropy in other non-CFT contexts?
- other non-AdS holography examples?

Still missing: comprehensive family of simple models such that

- dual (conformal) field theory identified
- exists for $c \sim \mathcal{O}(1)$ (ultra-quantum limit)
- exists for $c \rightarrow \infty$ (semi-classical limit)
... or prove that no such model \exists, unless UV-completed to string theory!

Thanks for your attention!

Vladimir Bulatov, M.C.Escher Circle Limit III in a rectangle

[^0]: Afshar et al '12
 Discrete set of Newton constant values compatible with unitarity
 (3D spin- N gravity in next-to-principal embedding)

