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General motivations

I Quantum gravity
I Address conceptual issues of quantum gravity

I Black holes (thermodynamics, evaporation, information loss, microstate
counting, entanglement entropy, firewalls, ...)

I String theory (is it the right theory? can there be any alternative? ...)
I Holography

I Holographic principle realized in Nature? (yes/no)

I Quantum gravity via AdS/CFT? (define quantum gravity in AdS by
constructing/postulating dual CFT)

I How general is holography? (non-unitary holography, higher spin
holography, flat space holography, non-AdS holography, ...)

I Applications
I Gauge gravity correspondence (plasmas, condensed matter, ...)
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Specific motivation for 3D

Gravity in 3D is simpler than in higher dimensions
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Goals of this talk

1. Review general aspects of holography in 3D

2. Discuss flat space holography

3. Generalize to higher spin holography

4. List selected open issues

Address these issues in 3D!
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Assumptions

Working assumptions:

I 3D

I Restrict to “pure gravity” theories

I Define quantum gravity by its dual field theory

Interesting dichotomy:

I Either dual field theory exists → useful toy model for quantum gravity

I Or gravitational theory needs UV completion (within string theory) →
indication of inevitability of string theory

This talk:

I Remain agnostic about dichotomy

I Focus on generic features of dual field theories that do not require
string theory embedding
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Gravity in 3D
AdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Simple microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

I Simple checks of Ryu–Takayanagi proposal

Caveat: while there are many string compactifications with AdS3 factor,
applying holography just to AdS3 factor does not capture everything!
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Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
Example: Einstein gravity with Dirichlet boundary conditions

I = − 1

16πGN

∫
d3x
√
|g|
(
R+

2

`2
)

with δg = fixed at the boundary

2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Apply algorithm above to flat space holography in 3D gravity theories

Goal of this talk:
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ds2 = dρ2 +
(
e2ρ/` γ

(0)
ij + γ

(2)
ij + . . .

)
dxi dxj

with δγ(0) = 0 for ρ→∞
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Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges

Example: Two copies of Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n) δn+m, 0

with Brown–Henneaux central charge

c =
3`

2GN
Reminder: ASA = quotient algebra of asymptotic symmetries by
‘trivial’ asymptotic symmetries with zero canonical charges
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2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA

Example: semi-classical ASA in spin-3 gravity (Henneaux, Rey ’10;
Campoleoni, Pfenninger, Fredenhagen, Theisen ’10)

[Wn, Wm] =
16

5c

∑
p

LpLn+m−p + . . .

quantum ASA

[Wn, Wm] =
16

5c+ 22

∑
p

: LpLn+m−p : + . . .
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Example:

0.0 0.2 0.4 0.6 0.8 1.0
Α0

5

10

15

20

25

c

Afshar et al ’12
Discrete set of Newton
constant values compatible
with unitarity
(3D spin-N gravity in
next-to-principal embedding)
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4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Example: Monster CFT in (flat space) chiral gravity
Witten ’07
Li, Song & Strominger ’08
Bagchi, Detournay & DG ’12

Z(q) = J(q) =
1

q
+ (1 + 196883) q +O(q2)

Note: ln 196883 ≈ 12.2 = 4π + quantum corrections
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4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
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Examples: too many!
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Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?
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Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?

I Works straightforwardly sometimes, otherwise not

I Example where it works nicely: asymptotic symmetry algebra
I Take linear combinations of Virasoro generators Ln, L̄n

Ln = Ln − L̄−n Mn =
1

`

(
Ln + L̄−n

)
I Make Inönü–Wigner contraction `→∞ on ASA

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Mn, Mm] = 0

I This is nothing but the BMS3 algebra (or GCA2, URCA2, CCA2)!
I Example where it does not work easily: boundary conditions!
I Example where it does not work at all: highest weight conditions!

Daniel Grumiller — Flat Space Holography Flat space holography 12/28



Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?

I Works straightforwardly sometimes, otherwise not
I Example where it works nicely: asymptotic symmetry algebra

I Take linear combinations of Virasoro generators Ln, L̄n
Ln = Ln − L̄−n Mn =

1

`

(
Ln + L̄−n

)
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Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?

Not in general! Must (also) work intrinsically in flat space!
Interesting example:

I unitarity of flat space quantum gravity

I extrapolate from AdS: should be unitary (?)

I extrapolate from dS: should be non-unitary (?)

I directly in flat space: both options realized, depending on details of
model

Many open issues in flat space holography!

Next few slides: mention a couple of recent results
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Overview of selected recent results

I Applying algorithm just described to flat space theories

I Flat space chiral gravity

I Cosmic evolution from phase transition

I (Holographic) entanglement entropy

I Flat space higher spin gravity

I Unitarity of dual field theory

I Adding chemical potentials
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
Topologically massive gravity with mixed boundary conditions

I = IEH +
1

32πGµ

∫
d3x
√
−g ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)
with δg = fixed and δKL = fixed at the boundary
Deser, Jackiw & Templeton ’82

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory

8. If unhappy with result go back to previous items and modify
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions

asymptotically flat adapted to lightlike infinity (ϕ ∼ ϕ+ 2π)

ds̄2 = −du2 − 2 dudr + r2 dϕ2

guu = huu +O(1
r )

gur = −1 + hur/r +O( 1
r2 )

guϕ = huϕ +O(1
r )

grr = hrr/r
2 +O( 1

r3 )

grϕ = h1(ϕ) + hrϕ/r +O( 1
r2 )

gϕϕ = r2 + (h2(ϕ) + uh3(ϕ))r +O(1)

Barnich & Compere ’06
Bagchi, Detournay & DG ’12

3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s

Obtain canonical boundary charges

QMn =
1

16πG

∫
dϕeinϕ

(
huu + h3

)
QLn =

1

16πGµ

∫
dϕeinϕ

(
huu + ∂uhur + 1

2∂
2
uhrr + h3

)
+

1

16πG

∫
dϕeinϕ

(
inuhuu + inhur + 2huϕ + ∂uhrϕ

− (n2 + h3)h1 − inh2 − in∂ϕh1

)
Bagchi, Detournay & DG ’12

4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Mn, Mm] = 0

with central charges

cL =
3

µG
cM =

3

G

Note:
I cL = 0 in Einstein gravity
I cM = 0 in conformal Chern–Simons gravity (µ→ 0, µG = 1

8k )
Flat space chiral gravity!
Bagchi, Detournay & DG ’12

5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Daniel Grumiller — Flat Space Holography Flat space holography 14/28
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Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA
Trivial here

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory

8. If unhappy with result go back to previous items and modify
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA
I Straightforward in flat space chiral gravity
I Difficult/impossible otherwise

7. Identify/constrain dual field theory

8. If unhappy with result go back to previous items and modify
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory
Monster CFT in flat space chiral gravity
Witten ’07
Li, Song & Strominger ’08
Bagchi, Detournay & DG ’12

Z(q) = J(q) =
1

q
+ (1 + 196883) q +O(q2)

Note: ln 196883 ≈ 12.2 = 4π + quantum corrections

8. If unhappy with result go back to previous items and modify
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

We are happy!
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Flat space chiral gravity
Bagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 '
chiral extremal CFT with central charge c = 24

ICSG =
k

4π

∫ (
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)
I Trace and gravitational anomalies match
I Perturbative states match (Virasoro descendants of vacuum)
I Gaps in spectra match
I Microscopic counting of SFSC reproduced by chiral Cardy formula
I No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =
1

q
+ 196884 q +O(q2)

Daniel Grumiller — Flat Space Holography Flat space holography 15/28



Flat space chiral gravity
Bagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 '
chiral extremal CFT with central charge c = 24

ICSG =
k

4π

∫ (
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)

I Trace and gravitational anomalies match
I Perturbative states match (Virasoro descendants of vacuum)
I Gaps in spectra match
I Microscopic counting of SFSC reproduced by chiral Cardy formula
I No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =
1

q
+ 196884 q +O(q2)

Daniel Grumiller — Flat Space Holography Flat space holography 15/28



Flat space chiral gravity
Bagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 '
chiral extremal CFT with central charge c = 24

ICSG =
k

4π

∫ (
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)
I Trace and gravitational anomalies match

I Perturbative states match (Virasoro descendants of vacuum)
I Gaps in spectra match
I Microscopic counting of SFSC reproduced by chiral Cardy formula
I No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =
1

q
+ 196884 q +O(q2)

Daniel Grumiller — Flat Space Holography Flat space holography 15/28



Flat space chiral gravity
Bagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 '
chiral extremal CFT with central charge c = 24

ICSG =
k

4π

∫ (
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)
I Trace and gravitational anomalies match
I Perturbative states match (Virasoro descendants of vacuum)

I Gaps in spectra match
I Microscopic counting of SFSC reproduced by chiral Cardy formula
I No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =
1

q
+ 196884 q +O(q2)

Daniel Grumiller — Flat Space Holography Flat space holography 15/28



Flat space chiral gravity
Bagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 '
chiral extremal CFT with central charge c = 24

ICSG =
k

4π

∫ (
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)
I Trace and gravitational anomalies match
I Perturbative states match (Virasoro descendants of vacuum)
I Gaps in spectra match

I Microscopic counting of SFSC reproduced by chiral Cardy formula
I No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =
1

q
+ 196884 q +O(q2)

Daniel Grumiller — Flat Space Holography Flat space holography 15/28



Flat space chiral gravity
Bagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 '
chiral extremal CFT with central charge c = 24

ICSG =
k

4π

∫ (
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)
I Trace and gravitational anomalies match
I Perturbative states match (Virasoro descendants of vacuum)
I Gaps in spectra match
I Microscopic counting of SFSC reproduced by chiral Cardy formula

I No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =
1

q
+ 196884 q +O(q2)

Daniel Grumiller — Flat Space Holography Flat space holography 15/28



Flat space chiral gravity
Bagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 '
chiral extremal CFT with central charge c = 24

ICSG =
k

4π

∫ (
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)
I Trace and gravitational anomalies match
I Perturbative states match (Virasoro descendants of vacuum)
I Gaps in spectra match
I Microscopic counting of SFSC reproduced by chiral Cardy formula
I No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =
1

q
+ 196884 q +O(q2)

Daniel Grumiller — Flat Space Holography Flat space holography 15/28



Flat space chiral gravity
Bagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 '
chiral extremal CFT with central charge c = 24

ICSG =
k

4π

∫ (
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)
I Trace and gravitational anomalies match
I Perturbative states match (Virasoro descendants of vacuum)
I Gaps in spectra match
I Microscopic counting of SFSC reproduced by chiral Cardy formula
I No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =
1

q
+ 196884 q +O(q2)

Daniel Grumiller — Flat Space Holography Flat space holography 15/28



Cosmic evolution from phase transition
Flat space version of Hawking–Page phase transition

Hot flat space (ϕ ∼ ϕ+ 2π)

ds2 = ±dt2 + dr2 + r2 dϕ2
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Cosmic evolution from phase transition
Flat space version of Hawking–Page phase transition

Hot flat space (ϕ ∼ ϕ+ 2π)

ds2 = ±dt2 + dr2 + r2 dϕ2

ds2 = ±dτ2 +
(Eτ)2 dx2

1 + (Eτ)2
+
(
1 + (Eτ)2

) (
dy +

(Eτ)2

1 + (Eτ)2
dx
)2

Flat space cosmology (y ∼ y + 2πr0)
Bagchi, Detournay, DG & Simon ’13
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Flat space cosmologies (Cornalba & Costa ’02)

I Start with BTZ in AdS:

ds2 = −
(r2 −R2

+)(r2 − r2
−)

r2`2
dt2+

r2`2 dr2

(r2 −R2
+)(r2 − r2

−)
+r2

(
dϕ−R+r−

`r2
dt
)2

I Consider region between the two horizons r− < r < R+

I Take the `→∞ limit (with R+ = `r̂+ and r− = r0)

ds2 = r̂2
+

(
1− r2

0

r2

)
dt2 − r2 dr2

r̂2
+ (r2 − r2

0)
+ r2

(
dϕ− r̂+r0

r2
dt
)2

I Go to Euclidean signature (t = iτE , r̂+ = −ir+)

ds2 = r2
+

(
1− r2

0

r2

)
dτ2

E +
r2 dr2

r2
+ (r2 − r2

0)
+ r2

(
dϕ− r+r0

r2
dτE

)2
I Note peculiarity: no conical singularity, but asymptotic conical defect!

Is FSC or HFS the preferred Euclidean saddle?

Question we want to address:
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Euclidean path integral

Evaluate Euclidean partition function in semi-classical limit

Z(T, Ω) =

∫
Dg e−Γ[g] =

∑
gc

e−Γ[gc(T,Ω)] × Zfluct.

boundary conditions specified by temperature T and angular velocity Ω

Two Euclidean saddle points in same ensemble if

I same temperature T = 1/β and angular velocity Ω

I obey flat space boundary conditions

I solutions without conical singularities

Periodicities fixed:

(τE , ϕ) ∼ (τE + β, ϕ+ βΩ) ∼ (τE , ϕ+ 2π)
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Results

On-shell action:

Γ = − 1

16πGN

∫
d3x
√
g R− 1

16πGN︸ ︷︷ ︸
1
2

GHY!

∫
d2x
√
γ K

Free energy:

FHFS = − 1

8GN
FFSC = − r+

8GN

I r+ > 1: FSC dominant saddle

I r+ < 1: HFS dominant saddle

Critical temperature:

Tc =
1

2πr0
=

Ω

2π

HFS “melts” into FSC at T > Tc
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Entanglement entropy of Galilean CFTs and flat space holography
Bagchi, Basu, DG, Riegler ’14

Using methods similar to CFT:

SGCFT
EE =

cL
6

ln
`x
a︸ ︷︷ ︸

like CFT

+
cM
6

`y
`x︸ ︷︷ ︸

like grav anomaly

I flat space chiral gravity: cL 6= 0, cM = 0

I flat space Einstein gravity: cL = 0, cM 6= 0

Same results obtained holographically!

I Using methods similar to Ammon, Castro Iqbal ’13, de Boer, Jottar
’13, Castro, Detournay, Iqbal, Perlmutter ’14

I geodesics ⇒ Wilson lines
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Flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel ’13, Gonzalez, Matulich, Pino, Troncoso ’13

I AdS gravity in CS formulation: spin 2 → spin 3 ∼ sl(2)→ sl(3)

I Flat space: similar!

Sflat
CS =

k

4π

∫
CS(A)

with isl(3) connection (ea = “zuvielbein”)

A = eaTa + ωaJa Ta = (Mn, Vm) Ja = (Ln, Um)

I Same type of boundary conditions as for spin 2:

A(r, t, ϕ) = b−1(r)
(

d+a(t, ϕ) + o(1)
)
b(r)

I Flat space boundary conditions: b(r) = exp (1
2 rM−1) and

a(t, ϕ) =
(
M1 −M(ϕ)M−1 − V (ϕ)V−2

)
dt

+
(
L1 −M(ϕ)L−1 − V (ϕ)U−2 − L(ϕ)M−1 − Z(ϕ)V−2

)
dϕ

I Spin 3 charges:

Q[εM , εL, εV , εU ] ∼
∮ (

εM (ϕ)M(ϕ)+εL(ϕ)L(ϕ)+εV (ϕ)V (ϕ)+εU (ϕ)U(ϕ)
)
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Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ’13

I Do either Brown–Henneaux type of analysis or İnönü–Wigner
contraction of two copies of quantum W3-algebra

I Obtain new type of W -algebra as extension of BMS (“BMW”)

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Un, Um] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m +
192

cM
(n−m)Λn+m

−
96
(
cL+ 44

5

)
c2M

(n−m)Θn+m +
cL
12

n(n2 − 1)(n2 − 4) δn+m, 0

[Un, Vm] = (n−m)(2n2 + 2m2 − nm− 8)Mn+m +
96

cM
(n−m)Θn+m

+
cM
12

n(n2 − 1)(n2 − 4) δn+m, 0

I Note quantum shift and poles in central terms!

I Analysis generalizes to flat space contractions of other W -algebras
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Λn =
∑
p

: LpMn−p : − 3
10

(n+ 2)(n+ 3)Mn Θn =
∑
p

MpMn−p

other commutators as in isl(3) with n ∈ Z
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I Analysis generalizes to flat space contractions of other W -algebras
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Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:
I Unitarity in GCA requires cM = 0 (see paper for caveats!)

I Non-triviality requires then cL 6= 0
I Generalization to contracted higher spin algebras straightforward
I All of them contain GCA as subalgebra
I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un
Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)
∑
p

MpMn−p

Higher spin states decouple and become null states!
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Unitarity in flat space
Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?
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Example:
Flat space chiral gravity
Bagchi, Detournay, DG, 1208.1658

Compatible with “spirit” of various
no-go results in higher dimensions!
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Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Example:
Minimal model holography
Gaberdiel, Gopakumar, 1011.2986, 1207.6697

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?

Daniel Grumiller — Flat Space Holography Flat space holography 24/28



Unitarity in flat space
Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Example:
Flat space higher spin gravity (Galilean W3 algebra)
Afshar, Bagchi, Fareghbal, DG and Rosseel, 1307.4768
Gonzalez, Matulich, Pino and Troncoso, 1307.5651

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?
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Unitarity in flat space
Flat space W∞-algebra compatible with unitarity DG, Riegler, Rosseel ’14

I We do not know if flat space chiral higher spin gravity exists...

I ...but its existence is at least not ruled out by the no-go result!
I If it exists, this must be its asymptotic symmetry algebra:

[
V im,Vjn

]
=

b i+j2 c∑
r=0

gij2r(m,n)V i+j−2r
m+n + ciV(m) δij δm+n,0

[
V im,Wj

n

]
=

b i+j2 c∑
r=0

gij2r(m,n)W i+j−2r
m+n

[
W i
m,Wj

n

]
= 0

where
ciV(m) = #(i, m) × c and c = −c̄

I Vacuum descendants W i
m|0〉 are null states for all i and m!

I AdS parent theory: no trace anomaly, but gravitational anomaly
(Like in conformal Chern–Simons gravity → Vasiliev type analogue?)
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Adding chemical potentials Gary, DG, Riegler, Rosseel ’14

Long story short:

Au → Au + µ

Works nicely in Chern–Simons formulation!
Interesting novel phase transitions of zeroth/first order:
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Daniel Grumiller — Flat Space Holography Flat space holography 26/28



Adding chemical potentials Gary, DG, Riegler, Rosseel ’14

Long story short:
Au → Au + µ

Works nicely in Chern–Simons formulation!

Interesting novel phase transitions of zeroth/first order:

0.1 0.2 0.3 0.4
T

-2

-1

1

2

3

4

5
F

0.1 0.2 0.3 0.4
T

-35

-30

-25

-20

-15

-10

-5

F

0.1 0.2 0.3 0.4
T

-5

-4

-3

-2

-1

1
F

0.1 0.2 0.3 0.4
T

-4

-3

-2

-1

1
F

0.1 0.2 0.3 0.4
T

-6

-5

-4

-3

-2

-1

1
F

0.1 0.2 0.3 0.4
T

-8

-6

-4

-2

F

Free energy of four branches of regular solutions as function of temperature for different
values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar ’12)

Daniel Grumiller — Flat Space Holography Flat space holography 26/28



Adding chemical potentials Gary, DG, Riegler, Rosseel ’14

Long story short:
Au → Au + µ

Works nicely in Chern–Simons formulation!
Line-element with spin-2 and spin-3 chemical potentials:

gµν dxµ dxν =
(
r2 (µ2

L − 4µ′′UµU + 3µ′ 2U + 4Mµ2
U

)
+ r g(r)

uu + g(0)
uu + g(0′)

uu

)
du2+(

r2µL − rµ′M +N (1 + µM) + 8ZµV

)
2 du dϕ− (1 + µM) 2 dr du+ r2 dϕ2

g
(0)
uu =M(1 + µM)

2
+ 2(1 + µM)

(
NµL + 12VµV + 16ZµU

)
+ 16ZµLµV + 4

3

(
M2

µ
2
V + 4MNµUµV +N2

µ
2
U

)
Spin-3 field with same chemical potentials:

Φµνλ dx
µ

dx
ν

dx
λ

= Φuuu du
3

+ Φruu dr du
2

+ Φuuϕ du
2

dϕ−
(
2µUr

2 − rµ′
V + 2NµV

)
dr du dϕ

+ µV dr
2

du−
(
µ
′
Ur

3 − 1
3
r
2
(µ

′′
V −MµV + 4NµU) + rNµ′

V −N
2
µV
)

du dϕ
2

Φuuu = r
2 [

2(1 + µM)µU(MµL − 4VµU)− 1
3
µ
2
L(MµV − 4NµU) + 16µLµU(VµV + ZµU)− 4

3
Mµ

2
U(MµV

+ 2NµU)
]

+ 2V(1 + µM)
3

+ 2
3

(1 + µM)
2(

6ZµL +M2
µV + 2MNµU

)
+ 16µLµ

2
V(NV − 1

3
MZ)

+ 2
3

(1 + µM)
(
(NµL + 16ZµU)(2MµV +NµU) + 12MVµ2

V

)
+ 64

3
ZµUµV(NµL + 12VµV + 12ZµU)

+N2
µ
2
LµV + 64V2

µ
3
V −

8
27

(M3
µ
3
V −N

3
µ
3
U)− 4

9
MNµUµV(4MµV + 5NµU) +

∑3

n=0
r
n

Φ
(rn)
uuu

Interesting novel phase transitions of zeroth/first order:
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Adding chemical potentials Gary, DG, Riegler, Rosseel ’14

Long story short:
Au → Au + µ

Works nicely in Chern–Simons formulation!
Interesting novel phase transitions of zeroth/first order:
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Selected open issues

We have answered an ε of the open questions.

Here are a few more εs:
I further checks of flat space chiral gravity (2-, 3-point correlators,

semi-classical partition function, ...)
I existence of flat space chiral higher spin gravity?
I flat space local quantum quench? (Nozaki, Numasawa, Takayanagi ’13)
I (holographic) entanglement entropy in other non-CFT contexts?
I other non-AdS holography examples?

Still missing: comprehensive family of simple models such that
I dual (conformal) field theory identified

I exists for c ∼ O(1) (ultra-quantum limit)

I exists for c→∞ (semi-classical limit)
... or prove that no such model ∃, unless UV-completed to string theory!
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Thanks for your attention!

Vladimir Bulatov, M.C.Escher Circle Limit III in a rectangle
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