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Motivation
How general is holography?

I Holographic principle, if correct, must work beyond AdS/CFT
holographic principle: ’t Hooft ’93; Susskind ’94

AdS/CFT precursor: Brown, Henneaux ’86
AdS/CFT: Maldacena ’97; Gubser, Klebanov, Polyakov ’98; Witten
’98

non-unitary holography:
AdS/log CFT ’08-’13: review: DG, Riedler, Rosseel, Zojer ’13
Vafa ’14

I Does it work in flat space?
I Can we find models realizing flat space/field theory correspondences?
I Are there higher-spin versions of such models?
I Does this correspondence emerge as limit of (A)dS/CFT?
I Relation between S-matrix and holographic observables?
I Entanglement entropy in flat space (higher spin) gravity?
I possibly O(104) other questions...

Many interesting open issues in flat space holography!
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Goals of this talk

1. Review (AdS and flat space) holography

2. Discuss flat space cosmologies (microstates, phase transitions)

3. Start flat space holographic dictionary (sources, 1-point functions)

4. Generalize to higher spin gravity (avoid no-go’s, unitarity)

5. List selected open issues

Address these issues in 3D!
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“Gravity 3D is a spellbinding experience”

... so let us consider 3D gravity!
Daniel Grumiller — Flat space higher spin holography Simplification (3D) 7/29



Some properties of 3D gravity
AdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

Flat space analogues of these features?
Does naive Λ→ 0 limit work?
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Flat space limit
Example 1: Limit of geometries

Global AdS metric (ϕ ∼ ϕ+ 2π):

ds2
AdS = d(`ρ)2 − cosh2

( `ρ
`

)
dt2 + `2 sinh2

( `ρ
`

)
dϕ2

Limit `→∞ (r = `ρ):

ds2
Flat = dr2 − dt2 + r2 dϕ2 = −du2 − 2 dudr + r2 dϕ2

BTZ metric:

ds2
BTZ = −

( r
2

`2
− r2

+

`2
)(r2 − r2

−)

r2
dt2+

r2 dr2

( r
2

`2
− r2

+

`2
)(r2 − r2

−)
+r2

(
dϕ−

r+
` r−

r2
dt
)2

Limit `→∞ (r̂+ = r+
` = finite):

ds2
FSC = r̂2

+

(
1− r2

−
r2

)
dt2 − 1

1− r2
−
r2

dr2

r̂2
+

+ r2
(

dϕ− r̂+ r−
r2

dt
)2

Shifted-boost orbifold studied by Cornalba & Costa more than decade ago
Describes expanding (contracting) Universe in flat space (horizon r = r−)
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FSC Penrose diagram (2D slice)

I

II

III IV

i+

J + J +

H+H+

i−

H− H−

J −J −

(graphics from Bagchi, DG, Salzer,

Sarkar, Schöller ’14)

I I: expanding cosmology
relevant patch for thermodynamics

I II: contracting cosmology

I III, IV: regions with access to
singularity (wiggly line)

I i+: future time-like infinity

I J +: future null infinity

I H+: horizon of expanding
cosmology (dashed line)

I H−: horizon of contracting
cosmology (dashed line)

I J−: past null infinity

I i−: past time-like infinity
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Flat space limit
Example 2: Limit of asymptotic boundaries (ultra-relativistic boost)

AdS-boundary:

Limit `→∞

Flat space boundary:

Null infinity holography!
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Flat space limit
Example 3: Limit of asymptotic symmetries (Barnich, Compère ’06)

I Take two copies of Virasoro, generators Ln, L̄n, central charges c, c̄

I Define superrotations Ln and supertranslations Mn

Ln := Ln − L̄−n Mn := 1
`

(
Ln + L̄−n

)
I Make ultrarelativistic boost, `→∞ (İnönü–Wigner contraction)

[Ln, Lm] = (n−m)Ln+m + cL
1
12

(
n3 − n

)
δn+m, 0

[Ln, Mm] = (n−m)Mn+m + cM
1
12

(
n3 − n

)
δn+m, 0

[Mn, Mm] = 0

I Is precisely the (centrally extended) BMS3 algebra!

I Central charges:

cL = c− c̄ cM = (c+ c̄)/`

I BMS3 = GCA2 = URCA2 Bagchi, Gopakumar ’09, Bagchi ’10

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 12/29



Flat space limit
Example 3: Limit of asymptotic symmetries (Barnich, Compère ’06)

I Take two copies of Virasoro, generators Ln, L̄n, central charges c, c̄

I Define superrotations Ln and supertranslations Mn

Ln := Ln − L̄−n Mn := 1
`

(
Ln + L̄−n

)

I Make ultrarelativistic boost, `→∞ (İnönü–Wigner contraction)
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Chern–Simons formulation of AdS gravity
CS with weird boundary conditions (Achucarro & Townsend ’86; Witten ’88; Bañados ’96)

I CS action:

SCS =
k

4π

∫
CS(A)− k

4π

∫
CS(Ā)

with
CS(A) = 〈A ∧ dA+ 2

3 A ∧A ∧A〉
Locally trivial (pure gauge), but globally non-trivial

I Relation to gravity: k ∼ 1/GN
Dreibein: e/` ∼ A− Ā, spin-connection: ω ∼ A+ Ā

I Boundary conditions for sl(2) connections A (Ā analogously):

A(ρ, x±) = b−1(ρ)
(

d+a(x±) + o(1)
)
b(ρ)

I AdS boundary conditions: b(ρ) = exp (ρL0) and

a(x±) =
(
L1 + L(x+)L−1

)
dx+

I Virasoro charges and algebra:

Q[ε] ∼
∮
ε(x+)L(x+) δεL = L′ ε+ 2L ε′ + c

12
ε′′′
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Chern–Simons formulation of flat space gravity
Barnich, Gonzalez ’13, Afshar ’13, Riegler ’15 (part of PhD thesis)

I CS action:

SCS =
k

4π

∫
CS(A)

with iso(2, 1) connection

A = eaMa + ωaLa

I Same type of boundary conditions:

A(r, t, ϕ) = b−1(r)
(

d+a(t, ϕ) + o(1)
)
b(r)

I Flat space boundary conditions: b(r) = exp (1
2 rM−1) and

a(t, ϕ) =
(
M1 −M(ϕ)M−1

)
dt+

(
L1 −M(ϕ)L−1 − L(ϕ)M−1

)
dϕ

I BMS charges and BMS/GCA algebra:

Q[εM , εL] ∼
∮ (

εM (ϕ)M(ϕ) + εL(ϕ)L(ϕ)
)

δεLL = L′ εL+2Lε′L+ cL
12 ε

′′′
L δεLM = M ′ εL+2M ε′L+ cM

12 ε
′′′
L δεMM = 0
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Flat space cosmologies
Graphics by Barnich, Gomberoff, Gonzalez ’12

I Physical states characterized by two functions M(ϕ) and L(ϕ)

I Geometric meaning:

ds2 =M(ϕ) du2 − 2 du dr + r2 dϕ2 + 2L(ϕ) dudϕ

I Physical meaning: M∼ mass, L ∼ angular momentum
I Ground state (global flat space): M = −1, L = 0
I Flat space cosmologies: M = M ≥ 0, L = J

cosmological  solutions

angular defects

J

black holes

M

angular defects

J

M

angular excessangular excess

(a) (b)
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Microstate counting
Cardy-like formula?

I Direct calculation of Cardy-like formula in GCA2 with cL = 0 (Bagchi,
Detournay, Simón ’12, Barnich ’12)

SGCA = πhL

√
cM

6hM

I Limit from AdS results (Riegler ’14, Fareghbal, Naseh ’14)
I Inner horizon Cardy-formula! (Castro, Rodriguez ’12, Detournay ’12)

Smacro = SAint =
Aint

4G
= 2π

√
ch

6
−2π

√
c̄h̄

6
= Sinner = Smicro

I Make İnönü–Wigner contraction as before

cL = c− c̄ cM =
1

`

(
c+ c̄

)
hL = h− h̄ hM =

1

`

(
h+ h̄

)
I Get contracted Cardy-like formula:

Sinner = π

√
cMhM

6

( hL
hM

+
cL
cM

)
I Einstein gravity: cL = 0 reproduces correct formula for SGCA of

Bagchi, Detournay, Simón ’12, Barnich ’12
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Phase transitions
Statement of main result

Hot flat space (ϕ ∼ ϕ+ 2π)

ds2 = ±dt2 + dr2 + r2 dϕ2

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 17/29



Phase transitions
Statement of main result

Hot flat space (ϕ ∼ ϕ+ 2π)

ds2 = ±dt2 + dr2 + r2 dϕ2

ds2 = ±dτ2 +
(Eτ)2 dx2

1 + (Eτ)2
+
(
1 + (Eτ)2

) (
dy +

(Eτ)2

1 + (Eτ)2
dx
)2

Flat space cosmology (y ∼ y + 2πr0)
Bagchi, Detournay, Grumiller, Simón ’13
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Phase transitions
Derivation from Euclidean path integral

I Evaluate Euclidean partition function in semi-classical limit

Z(T, Ω) =

∫
Dg e−Γ[g] =

∑
gc

e−Γ[gc(T,Ω)] × Zfluct.

boundary conditions specify temperature T , angular velocity Ω

I Leading contribution:

lnZ(T, Ω) ≈ −Γ[ĝc(T, Ω)]

ĝc is the most dominant classical saddle
I Two Euclidean saddle points in same ensemble if

I same temperature T and angular velocity Ω
I obey flat space boundary conditions
I solutions without conical singularities

I Determine saddle with lowest free energy (smallest on-shell action Γ)

For this to work need full action Γ!
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I obey flat space boundary conditions
I solutions without conical singularities

I Determine saddle with lowest free energy (smallest on-shell action Γ)

For this to work need full action Γ!
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Towards a holographic dictionary
0-point function (Detournay, DG, Schöller, Simón ’14)

I Full (holographically renormalized) action:

Γ = − 1

16πG

∫
M
d3x
√
g R− 1

16πG

∫
∂M
d2x
√
γ K

I Boundary term is half of Gibbons–Hawking–York!
I δΓ = 0 on-shell for all allowed variations δg
I Free energy: F (T, Ω) = T Γ(T, Ω)
I Free energy of flat space cosmology solutions:

FFSC(T, Ω) = −
r2

+

8G
= − π

2T 2

2GΩ2

I Free energy of (hot) flat space:

FHFS(T, Ω) = − 1

8G
I Phase transition at self-dual point (r+ = 1):

2π Tc = Ω T > Tc : FSC stable T < Tc : HFS stable
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Towards a holographic dictionary
Sources and 1-point functions (Detournay, DG, Schöller, Simón ’14)

I Sources ψµν : non-normalizable solutions to linearized EOM

I Linearized solutions: locally pure gauge in Einstein gravity
ψµν = ∇µξν +∇νξµ

I Gauge choice: axial gauge ψµνn
ν = 0 with nν = δνr

I Non-normalizable solutions with these choices:

ψτϕ = r2 ∂τξ
0+norm. ψϕϕ = 2r2 ∂ϕξ

0+norm. ψττ = 0+norm.

with

ξ0 = ξJ(ϕ) τ + 1
2

∫
dϕ ξM (ϕ)

I Result for 1-point functions then follow from usual holographic
dictionary:

δΓ
∣∣
EOM

= 1
2

∫
∂M
d2x

(
M
2π δξM −

J
2π δξJ

)
I M and J coincide precisely with zero-point canonical charges!
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I Sources ψµν : non-normalizable solutions to linearized EOM

I Linearized solutions: locally pure gauge in Einstein gravity
ψµν = ∇µξν +∇νξµ

I Gauge choice: axial gauge ψµνn
ν = 0 with nν = δνr

I Non-normalizable solutions with these choices:

ψτϕ = r2 ∂τξ
0+norm. ψϕϕ = 2r2 ∂ϕξ

0+norm. ψττ = 0+norm.

with

ξ0 = ξJ(ϕ) τ + 1
2

∫
dϕ ξM (ϕ)

I Result for 1-point functions then follow from usual holographic
dictionary:

δΓ
∣∣
EOM

= 1
2

∫
∂M
d2x

(
M
2π δξM −

J
2π δξJ

)

I M and J coincide precisely with zero-point canonical charges!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 20/29



Towards a holographic dictionary
Sources and 1-point functions (Detournay, DG, Schöller, Simón ’14)
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Outline

Motivation (how general is holography?)

Simplification (3D)

Generalization (higher derivatives or spins)
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Flat space chiral gravity
Bagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 '
chiral extremal CFT with central charge c = 24

ICSG =
k

4π

∫ (
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)
I Trace and gravitational anomalies match
I Perturbative states match (Virasoro descendants of vacuum)
I Gaps in spectra match
I Microscopic counting of SFSC reproduced by chiral Cardy formula
I No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =
1

q
+ 196884 q +O(q2)
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Flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel ’13, Gonzalez, Matulich, Pino, Troncoso ’13

I AdS gravity in CS formulation: spin 2 → spin 3 ∼ sl(2)→ sl(3)

I Flat space: similar!

Sflat
CS =

k

4π

∫
CS(A)

with isl(3) connection (ea = “zuvielbein”)

A = eaTa + ωaJa Ta = (Mn, Vm) Ja = (Ln, Um)

I Same type of boundary conditions as for spin 2:

A(r, t, ϕ) = b−1(r)
(

d+a(t, ϕ) + o(1)
)
b(r)

I Flat space boundary conditions: b(r) = exp (1
2 rM−1) and

a(t, ϕ) =
(
M1 −M(ϕ)M−1 − V (ϕ)V−2

)
dt

+
(
L1 −M(ϕ)L−1 − V (ϕ)U−2 − L(ϕ)M−1 − Z(ϕ)V−2

)
dϕ

I Spin 3 charges:

Q[εM , εL, εV , εU ] ∼
∮ (

εM (ϕ)M(ϕ)+εL(ϕ)L(ϕ)+εV (ϕ)V (ϕ)+εU (ϕ)U(ϕ)
)
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I AdS gravity in CS formulation: spin 2 → spin 3 ∼ sl(2)→ sl(3)
I Flat space: similar!

Sflat
CS =

k

4π

∫
CS(A)

with isl(3) connection (ea = “zuvielbein”)

A = eaTa + ωaJa Ta = (Mn, Vm) Ja = (Ln, Um)

I Same type of boundary conditions as for spin 2:

A(r, t, ϕ) = b−1(r)
(

d+a(t, ϕ) + o(1)
)
b(r)

I Flat space boundary conditions: b(r) = exp (1
2 rM−1) and

a(t, ϕ) =
(
M1 −M(ϕ)M−1 − V (ϕ)V−2

)
dt

+
(
L1 −M(ϕ)L−1 − V (ϕ)U−2 − L(ϕ)M−1 − Z(ϕ)V−2

)
dϕ

I Spin 3 charges:
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Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ’13

I Do either Brown–Henneaux type of analysis or İnönü–Wigner
contraction of two copies of quantum W3-algebra

I Obtain new type of W -algebra as extension of BMS (“BMW”)

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Un, Um] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m +
192

cM
(n−m)Λn+m

−
96
(
cL+ 44

5

)
c2M

(n−m)Θn+m +
cL
12

n(n2 − 1)(n2 − 4) δn+m, 0

[Un, Vm] = (n−m)(2n2 + 2m2 − nm− 8)Mn+m +
96

cM
(n−m)Θn+m

+
cM
12

n(n2 − 1)(n2 − 4) δn+m, 0

I Note quantum shift and poles in central terms!

I Analysis generalizes to flat space contractions of other W -algebras
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n(n2 − 1)(n2 − 4) δn+m, 0

Λn =
∑
p

: LpMn−p : − 3
10

(n+ 2)(n+ 3)Mn Θn =
∑
p

MpMn−p

other commutators as in isl(3) with n ∈ Z

I Note quantum shift and poles in central terms!
I Analysis generalizes to flat space contractions of other W -algebras
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Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:
I Unitarity in GCA requires cM = 0 (see paper for caveats!)

I Non-triviality requires then cL 6= 0
I Generalization to contracted higher spin algebras straightforward
I All of them contain GCA as subalgebra
I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un
Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)
∑
p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29



Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:
I Unitarity in GCA requires cM = 0 (see paper for caveats!)
I Non-triviality requires then cL 6= 0

I Generalization to contracted higher spin algebras straightforward
I All of them contain GCA as subalgebra
I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un
Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)
∑
p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29



Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:
I Unitarity in GCA requires cM = 0 (see paper for caveats!)
I Non-triviality requires then cL 6= 0
I Generalization to contracted higher spin algebras straightforward

I All of them contain GCA as subalgebra
I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un
Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)
∑
p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29



Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:
I Unitarity in GCA requires cM = 0 (see paper for caveats!)
I Non-triviality requires then cL 6= 0
I Generalization to contracted higher spin algebras straightforward
I All of them contain GCA as subalgebra

I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un
Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)
∑
p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29



Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:
I Unitarity in GCA requires cM = 0 (see paper for caveats!)
I Non-triviality requires then cL 6= 0
I Generalization to contracted higher spin algebras straightforward
I All of them contain GCA as subalgebra
I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un
Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)
∑
p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29



Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:
I Unitarity in GCA requires cM = 0 (see paper for caveats!)
I Non-triviality requires then cL 6= 0
I Generalization to contracted higher spin algebras straightforward
I All of them contain GCA as subalgebra
I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un

Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)
∑
p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29



Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:
I Unitarity in GCA requires cM = 0 (see paper for caveats!)
I Non-triviality requires then cL 6= 0
I Generalization to contracted higher spin algebras straightforward
I All of them contain GCA as subalgebra
I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un
Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)
∑
p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29



Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:
I Unitarity in GCA requires cM = 0 (see paper for caveats!)
I Non-triviality requires then cL 6= 0
I Generalization to contracted higher spin algebras straightforward
I All of them contain GCA as subalgebra
I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un
Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)
∑
p

MpMn−p

Higher spin states decouple and become null states!
Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29



Unitarity in flat space
Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?
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Unitarity in flat space
Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Example:
Flat space chiral gravity
Bagchi, Detournay, DG, 1208.1658

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!
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Unitarity in flat space
Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Example:
Minimal model holography
Gaberdiel, Gopakumar, 1011.2986, 1207.6697

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?
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Unitarity in flat space
Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Example:
Flat space higher spin gravity (Galilean W3 algebra)
Afshar, Bagchi, Fareghbal, DG and Rosseel, 1307.4768
Gonzalez, Matulich, Pino and Troncoso, 1307.5651

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?
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Unitarity in flat space
Flat space W∞-algebra compatible with unitarity DG, Riegler, Rosseel ’14

I We do not know if flat space chiral higher spin gravity exists...

I ...but its existence is at least not ruled out by the no-go result!
I If it exists, this must be its asymptotic symmetry algebra:

[
V im,Vjn

]
=

b i+j
2 c∑

r=0

gij2r(m,n)V i+j−2r
m+n + ciV(m) δij δm+n,0

[
V im,Wj

n

]
=

b i+j
2 c∑

r=0

gij2r(m,n)W i+j−2r
m+n

[
W i
m,Wj

n

]
= 0

where
ciV(m) = #(i, m) × c and c = −c̄

I Vacuum descendants W i
m|0〉 are null states for all i and m!

I AdS parent theory: no trace anomaly, but gravitational anomaly
(Like in conformal Chern–Simons gravity → Vasiliev type analogue?)
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Selected open issues

We have answered an ε of the open questions.

Here are a few more εs:

I check 2- and 3-point correlators on (higher spin) gravity side
I check semi-classical partition function on (higher spin) gravity side
I existence of flat space chiral higher spin gravity?
I Bondi news and holography?
I novel boundary conditions (both I ±)?
I holographic entanglement entropy in flat space (higher spin) gravity
I ...

I Long way to go before fully understanding flat space holography

I Part of the path now seems clear and may lead to new insights

I Other parts probably will require novel techniques
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