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There is a well-known system with many microstates studied for a long time
(recently with help of computers)

Go: ≈ 10172 microstates

(SGo ≈ 396)
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There is a well-known system with many microstates studied for a long time
(recently with help of computers)

Go: ≈ 10172 microstates (SGo ≈ 396) → black holes more complicated!
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Black hole microstates

Bekenstein–Hawking

SBH =
A

4GN
[for M� : eSBH ∼ O(e10

76
) ∼ echess microstates]

I Motivation: microscopic understanding of generic black hole entropy

I Microstate counting from CFT2 symmetries (Strominger, Carlip, ...)
using Cardy formula

I Generalizations in 2+1 gravity/gravity-like theories (Galilean CFT,
warped CFT, ...)

I Main idea: consider near horizon symmetries for non-extremal
horizons

I Near horizon line-element with Rindler acceleration a:

ds2 = −2aρ dv2 + 2 dv dρ+ γ2 dϕ2 + . . .

Meaning of coordinates:
I ρ: radial direction (ρ = 0 is horizon)
I ϕ ∼ ϕ+ 2π: angular direction
I v: (advanced) time
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Choices

I Rindler acceleration: state-dependent or chemical potential?

I If state-dependent: need mechanism to fix scale

— suggestion in
1512.08233:

v ∼ v + 2πL

Works technically but physical interpretation difficult

I If : all states in theory have same (Unruh-)temperature

TU =
a

2π

I Work in 3d Einstein gravity in Chern–Simons formulation

ICS = ±
∑
±

k

4π

∫
〈A± ∧ dA± + 2

3A
± ∧A± ∧A±〉

with sl(2) connections A± and k = `/(4GN ) with AdS radius ` = 1
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I If state-dependent: need mechanism to fix scale — suggestion in

1512.08233:
v ∼ v + 2πL

Works technically but physical interpretation difficult
I If chemical potential: all states in theory have same

(Unruh-)temperature
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Diagonal gauge

Standard trick: partially fix gauge

A± = b−1± (ρ)
(

d+a±(x0, x1)
)
b±(ρ)

with some group element b ∈ SL(2) depending on radius ρ with δb = 0

Drop ± decorations in most of talk

Manifold topologically a cylinder or torus, with radial coordinate ρ and
boundary coordinates (x0, x1) ∼ (v, ϕ)

I Standard AdS3 approach: highest weight gauge

a ∼ L+ + L(x0, x1)L− b(ρ) = exp (ρL0)

sl(2): [Ln, Lm] = (n−m)Ln+m, n,m = −1, 0, 1
I For near horizon purposes diagonal gauge useful:

a ∼ J (x0, x1)L0

I Precise boundary conditions (ζ: chemical potential):

a = (J dϕ+ ζ dv) L0 δa = δJ dϕ

and b = exp (1ζ L+) · exp (ρ2 L−). (assume constant ζ for simplicity)
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Near horizon metric

Using
gµν = 1

2

〈(
A+
µ −A−µ

) (
A+
ν −A−ν

)〉

yields (f := 1 + ρ/(2a))

ds2 = −2aρf dv2 + 2 dv dρ− 2ωa−1 dϕdρ

+ 4ωρf dv dϕ+
[
γ2 + 2ρ

a f(γ2 − ω2)
]

dϕ2

state-dependent functions J ± = γ ± ω, chemical potentials ζ± = −a± Ω
Neglecting rotation terms (ω = 0) yields Rindler plus higher order terms:

ds2 = −2aρ dv2 + 2 dv dρ+ γ2 dϕ2 + . . .

Comments:

I Recover desired near horizon metric

I Rindler acceleration a indeed state-independent
I Two state-dependent functions (γ, ω) as usual in 3d gravity
I γ = γ(ϕ): “black flower”

Daniel Grumiller — Rindler Holography Near horizon boundary conditions 9/23



Near horizon metric

Using
gµν = 1

2

〈(
A+
µ −A−µ

) (
A+
ν −A−ν

)〉
yields (f := 1 + ρ/(2a))

ds2 = −2aρf dv2 + 2 dv dρ− 2ωa−1 dϕdρ

+ 4ωρf dv dϕ+
[
γ2 + 2ρ

a f(γ2 − ω2)
]

dϕ2

state-dependent functions J ± = γ ± ω, chemical potentials ζ± = −a± Ω

For simplicity set Ω = 0 and a = const. in metric above

EOM imply ∂vJ ± = ±∂ϕζ±; in this case ∂vJ ± = 0

Neglecting rotation
terms (ω = 0) yields Rindler plus higher order terms:

ds2 = −2aρ dv2 + 2 dv dρ+ γ2 dϕ2 + . . .

Comments:
I Recover desired near horizon metric

I Rindler acceleration a indeed state-independent
I Two state-dependent functions (γ, ω) as usual in 3d gravity
I γ = γ(ϕ): “black flower”

Daniel Grumiller — Rindler Holography Near horizon boundary conditions 9/23



Near horizon metric

Using
gµν = 1

2

〈(
A+
µ −A−µ

) (
A+
ν −A−ν

)〉
yields (f := 1 + ρ/(2a))

ds2 = −2aρf dv2 + 2 dv dρ− 2ωa−1 dϕdρ

+ 4ωρf dv dϕ+
[
γ2 + 2ρ

a f(γ2 − ω2)
]

dϕ2

state-dependent functions J ± = γ ± ω, chemical potentials ζ± = −a± Ω
Neglecting rotation terms (ω = 0) yields Rindler plus higher order terms:

ds2 = −2aρ dv2 + 2 dv dρ+ γ2 dϕ2 + . . .

Comments:

I Recover desired near horizon metric

I Rindler acceleration a indeed state-independent
I Two state-dependent functions (γ, ω) as usual in 3d gravity
I γ = γ(ϕ): “black flower”

Daniel Grumiller — Rindler Holography Near horizon boundary conditions 9/23



Near horizon metric

Using
gµν = 1

2

〈(
A+
µ −A−µ

) (
A+
ν −A−ν

)〉
yields (f := 1 + ρ/(2a))

ds2 = −2aρf dv2 + 2 dv dρ− 2ωa−1 dϕdρ

+ 4ωρf dv dϕ+
[
γ2 + 2ρ

a f(γ2 − ω2)
]

dϕ2

state-dependent functions J ± = γ ± ω, chemical potentials ζ± = −a± Ω
Neglecting rotation terms (ω = 0) yields Rindler plus higher order terms:

ds2 = −2aρ dv2 + 2 dv dρ+ γ2 dϕ2 + . . .

Comments:

I Recover desired near horizon metric
I Rindler acceleration a indeed state-independent

I Two state-dependent functions (γ, ω) as usual in 3d gravity
I γ = γ(ϕ): “black flower”

Daniel Grumiller — Rindler Holography Near horizon boundary conditions 9/23



Near horizon metric

Using
gµν = 1

2

〈(
A+
µ −A−µ

) (
A+
ν −A−ν

)〉
yields (f := 1 + ρ/(2a))

ds2 = −2aρf dv2 + 2 dv dρ− 2ωa−1 dϕdρ

+ 4ωρf dv dϕ+
[
γ2 + 2ρ

a f(γ2 − ω2)
]

dϕ2

state-dependent functions J ± = γ ± ω, chemical potentials ζ± = −a± Ω
Neglecting rotation terms (ω = 0) yields Rindler plus higher order terms:

ds2 = −2aρ dv2 + 2 dv dρ+ γ2 dϕ2 + . . .

Comments:

I Recover desired near horizon metric
I Rindler acceleration a indeed state-independent
I Two state-dependent functions (γ, ω) as usual in 3d gravity

I γ = γ(ϕ): “black flower”

Daniel Grumiller — Rindler Holography Near horizon boundary conditions 9/23



Near horizon metric

Using
gµν = 1

2

〈(
A+
µ −A−µ

) (
A+
ν −A−ν

)〉
yields (f := 1 + ρ/(2a))

ds2 = −2aρf dv2 + 2 dv dρ− 2ωa−1 dϕdρ

+ 4ωρf dv dϕ+
[
γ2 + 2ρ

a f(γ2 − ω2)
]

dϕ2

state-dependent functions J ± = γ ± ω, chemical potentials ζ± = −a± Ω
Neglecting rotation terms (ω = 0) yields Rindler plus higher order terms:

ds2 = −2aρ dv2 + 2 dv dρ+ γ2 dϕ2 + . . .

Comments:

I Recover desired near horizon metric
I Rindler acceleration a indeed state-independent
I Two state-dependent functions (γ, ω) as usual in 3d gravity
I γ = γ(ϕ): “black flower”

Daniel Grumiller — Rindler Holography Near horizon boundary conditions 9/23



Canonical boundary charges

I Canonical boundary charges non-zero for large trafos that preserve
boundary conditions

I Zero mode charges: mass and angular momentum

Background independent result for Chern–Simons yields

Q[η] =
k

4π

∮
dϕη(ϕ)J (ϕ)

I Finite
I Integrable
I Conserved
I Non-trivial

Meaningful near horizon boundary
conditions and non-trivial theory!
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Near horizon symmetry algebra

I Near horizon symmetry algebra = all near horizon boundary
conditions preserving trafos, modulo trivial gauge trafos

Most general trafo

δεa = dε+ [a, ε] = O(δa)

that preserves our boundary conditions for constant ζ given by

ε = ε+L+ + ηL0 + ε−L−

with
∂vη = 0

implying
δεJ = ∂ϕη

I Expand charges in Fourier modes

J±n =
k

4π

∮
dϕeinϕJ ± (ϕ)

I Near horizon symmetry algebra[
J±n , J

±
m

]
= ±1

2knδn+m, 0
[
J+
n , J

−
m

]
= 0

Two û(1) current algebras with non-zero levels
I Much simpler than CFT2, warped CFT2, Galilean CFT2, etc.
I Map

P0 = J+
0 + J−0 Pn = i

kn (J+
−n + J−−n) if n 6= 0 Xn = J+

n − J−n
yields Heisenberg algebra (with Casimirs X0, P0)

[Xn, Xm] = [Pn, Pm] = [X0, Pn] = [P0, Xn] = 0

[Xn, Pm]= iδn,m if n 6= 0
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Soft hair

I Vacuum descendants |ψ(q)〉

|ψ(q)〉 ∼
∏

(J+

−n+
i

)m
+
i

∏
(J−−n−

i

)m
−
i |0〉

I Hamiltonian
H := Q[ε±|∂v ] = aP0

commutes with all generators of algebra

I Energy of vacuum descendants

Eψ = 〈ψ(q)|H|ψ(q)〉 = Evac〈ψ(q)|ψ(q)〉 = Evac

same as energy of vacuum

I Same conclusion true for descendants of any state!

Soft hair = zero energy excitations on horizon
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Macroscopic entropy

I Zero-mode solutions with constant chemical potentials: BTZ

J±0 = k
2 (r+ ± r−)

I Generic soft hairy black holes (or “black flowers”) from softly
boosting BTZ

I Soft hairy black holes remain regular and have same energy as BTZ
(for other boundary conditions generically not true)

I Macroscopic entropy

S = =
A

4GN
I No contribution from soft hair charges

I

Before addressing microstates consider map to aymptotic variables
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I Soft hairy black holes remain regular and have same energy as BTZ
(for other boundary conditions generically not true)

I Macroscopic entropy

S = 2π(J+
0 + J−0 ) =

A

4GN

calculated directly in Chern–Simons formulation

I No contribution from soft hair charges
I

Before addressing microstates consider map to aymptotic variables
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Map to asymptotic variables

I Usual asymptotic AdS3 connection with chemical potential µ:

Â = b̂−1
(

d+â
)
b̂ âϕ = L+ − 1

2 LL−
b̂ = eρL0 ât = µL+ − µ′L0 +

(
1
2 µ
′′ − 1

2 Lµ
)
L−

I Gauge trafo â = g−1 (d+a) g with

g = exp (xL+) · exp (−1
2JL−)

where ∂vx− ζx = µ and x′ − J x = 1
I Near horizon chemical potential transforms into combination of

asymptotic charge and chemical potential!

µ′ − J µ = −ζ
I Asymptotic charges: twisted Sugawara construction with near horizon

charges
L = 1

2J
2 + J ′

I Get Virasoro with non-zero central charge δL = 2Lε′ + L′ε− ε′′′
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)
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Remarks on asymptotic and near horizon variables

I Asymptotic spin-2 currents fulfill Virasoro algebra, but charges obey
still Heisenberg algebra

δQ = − k

4π

∮
dϕε δL = − k

4π

∮
dϕη δJ

Reason: asymptotic “chemical potentials” µ depend on near horizon
charges J and chemical potentials ζ

I Our boundary conditions singled out: whole spectrum compatible
with regularity

I For constant chemical potential ζ: regularity = holonomy condition

µµ′′ − 1
2µ
′ 2 − µ2L = −2π2/β2

Solved automatically from map to asymptotic observables; reminder:

µ′ − J µ = −ζ L = 1
2J

2 + J ′

Near horizon boundary conditions natural for near horizon observer
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Cardy counting

I Idea: use map to asymptotic observables to do standard Cardy
counting

I Twisted Sugawara construction expanded in Fourier modes

kLn =
∑
p∈Z

Jn−pJp+

I Starting from Heisenberg algebra obtain semi-classically Virasoro
algebra

[Ln, Lm] = (n−m)Ln+m +

I Usual Cardy formula yields Bekenstein–Hawking result

SCardy = 2π
√
L+
0 + 2π

√
L−0 = 2π(J+

0 + J−0 ) =
A

4GN
= SBH

Precise numerical factor in twist term crucial for correct results
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Warped CFT counting

I Map near horizon algebra J±n = 1
2(Jn ±Kn)

Yn ∼
∑

Jn−pKp Tn ∼ Jn

to centerless warped conformal algebra

[Yn, Ym] = (n−m)Yn+m

[Yn, Tm] = −mTn+m
[Tn, Tm] = 0

I Modular property Z(β, θ) = Tr (e−βH+iθJ) = Z(2πβ/θ,−4π2/θ)
(H = Q[∂v], J = Q[∂ϕ]) projects partition function to ground state
for small imaginary θ (we need θ → 0)

I Assuming Jvac = 0 yields

S = βH = SBH

Hamiltonian H is product of BH entropy and Unruh temperature
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Comparison to related approaches

I Brown, Henneaux ’86

Our boundary conditions differ from Brown–Henneaux — their
chemical potentials depend on our charges and chemical potentials!

Virasoro composite in terms of Heisenberg algebra

I Donnay, Giribet, González, Pino 1511.08687
I Afshar, Detournay, DG, Oblak 1512.08233
I Hawking, Perry, Strominger 1601.00921
I Comment on complementarity:

I Asymptotic Virasoro algebra composite from near horizon
perspective

I Same physics described naturally in different variables for
asymptotic and near horizon observers

I In particular, asymptotic chemical potentials depend on near
horizon charges and chemical potentials
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Comparison to related approaches

I Brown, Henneaux ’86
I Donnay, Giribet, González, Pino 1511.08687

I Observed already H = TSBH

I Changing our bc’s to

ds2 = −2aρdv2+2 dv dρ−2ωa−1 dϕdρ+4ωρdv dϕ+
[
γ2+ 2ρ

a (γ2−ω2)
]

dϕ2+O(ρ2)

yields AKVs
ξ = T (ϕ)∂v + Y (ϕ)∂ϕ +O(ρ3)

I Up to subleading terms same AKVs as DGGP

But: T and Y state-dependent for our boundary conditions!

Comment: map to Brown–Henneaux variables requires second chemical potential,

not just Rindler acceleration!
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Rindler acceleration state-dependent in that approach

Twisted warped CFT algebra composite in
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I Brown, Henneaux ’86
I Donnay, Giribet, González, Pino 1511.08687
I Afshar, Detournay, DG, Oblak 1512.08233
I Hawking, Perry, Strominger 1601.00921

I We constructed explicitly gravitational soft hair
I We find no soft hair contribution to black hole entropy
I BMS3 follows from Sugawara-like construction from Heisenberg algebra

BMS algebra (supertranslations + superrotation) com-
posite in terms of near horizon Heisenberg algebra

I Comment on complementarity:

I Asymptotic Virasoro algebra composite from near horizon
perspective
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Elaborations and generalizations

I More on dual field theory — to be done
I Flat space

I Similar story works!
I Get centerless BMS3 as composite algebra from Heisenberg algebra!
I Soft hairy flat space cosmologies
I Asymptotic chemical potentials again depend on near horizon charges

and chemical potentials
I Obtain again Bekenstein–Hawking entropy with no soft hair

contribution

I (Topologically) massive gravity (Deser, Jackiw, Templeton ’82) — To
be done! Doable!

I Higher spins — with Stefan Prohazka: similar story works!
I Lower spins — lowest spin gravity! (see Hofman, Rollier 1411.0672)
I 4d — Does it work? Is there soft Heisenberg hair? Is BMS4

composite? What are near horizon symmetries?

Near horizon symmetries shed new light on soft
hair, microstate counting and complementarity
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Thanks for your attention!

H. Afshar, S. Detournay, D. Grumiller, W. Merbis, A. Perez,
D. Tempo and R. Troncoso
“Soft Heisenberg hair on black holes in three dimensions,”
1603.04824

Thanks to Bob McNees for providing the LATEX beamerclass!

Daniel Grumiller — Rindler Holography Concluding comments 23/23

http://arxiv.org/abs/1603.04824

	Motivation
	Near horizon boundary conditions
	Soft Heisenberg hair
	Soft hairy black hole entropy
	Concluding comments

