How general is holography?

April 2015

Daniel Grumiller

Institute for Theoretical Physics
TU Wien
Seminar talk at CTP, MIT

Fundamental forces (xkcd 1489)

Fundamental forces (xkcd 1489)

"Of these four forces, there's one we don't really understand." "Is it the weak force or the strong-" "It's gravity."

Fundamental forces (xkcd 1489)

"Of these four forces, there's one we don't really understand." "Is it the weak force or the strong-" "It's gravity."

- Newton-Einstein world: Gravity best understood force

Fundamental forces (xkcd 1489)

"Of these four forces, there's one we don't really understand." "Is it the weak force or the strong-" "It's gravity."

- Newton-Einstein world: Gravity best understood force
- Bohr-Schrödinger world: Gravity least understood force

Fundamental forces (xkcd 1489)

"Of these four forces, there's one we don't really understand." "Is it the weak force or the strong-" "It's gravity."

- Newton-Einstein world: Gravity best understood force
- Bohr-Schrödinger world: Gravity least understood force

Main goal: understand quantum gravity

Outline

Motivation

Holography in 3d
Chern-Simons formulation
Asymptotic symmetries Example: flat space holography

Outlook - how general is holography?

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity

Keine Experimente! Konrad Adenauer , 10

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- Holography
- Holographic principle realized in Nature? (yes/no)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- Holography
- Holographic principle realized in Nature? (yes/no)
- Quantum gravity via AdS/CFT? (define quantum gravity in AdS by constructing/postulating dual CFT)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- Holography
- Holographic principle realized in Nature? (yes/no)
- Quantum gravity via AdS/CFT? (define quantum gravity in AdS by constructing/postulating dual CFT)
- How general is holography? (non-unitary holography, higher spin holography, flat space holography, non-AdS holography, ...)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- Holography
- Holographic principle realized in Nature? (yes/no)
- Quantum gravity via AdS/CFT? (define quantum gravity in AdS by constructing/postulating dual CFT)
- How general is holography? (non-unitary holography, higher spin holography, flat space holography, non-AdS holography, ...)
- Applications (will not address them in my talk)
- Gauge gravity correspondence (non-abelian plasmas, condensed matter)

Testing the holographic principle

How general is holography?

Testing the holographic principle

> How general is holography?

- To what extent do (previous) lessons rely on the particular constructions used to date?
- Are they tied to stringy effects and to string theory in particular, or are they general lessons for quantum gravity?
see numerous talks at KITP workshop "Bits, Branes, Black Holes" 2012 and at ESI workshop "Higher Spin Gravity" 2012

Testing the holographic principle

How general is holography?

- To what extent do (previous) lessons rely on the particular constructions used to date?
- Are they tied to stringy effects and to string theory in particular, or are they general lessons for quantum gravity?
- Does holography apply only to unitary theories?
- originally holography motivated by unitarity

Testing the holographic principle

How general is holography?

- To what extent do (previous) lessons rely on the particular constructions used to date?
- Are they tied to stringy effects and to string theory in particular, or are they general lessons for quantum gravity?
- Does holography apply only to unitary theories?
- originally holography motivated by unitarity
- plausible AdS/CFT-like correspondence could work non-unitarily
- AdS/log CFT first example of non-unitary holography DG, (Jackiw), Johansson '08; Skenderis, Taylor, van Rees '09; Henneaux, Martinez, Troncoso '09; Maloney, Song, Strominger '09; DG, Sachs/Hohm '09; Gaberdiel, DG, Vassilevich '10; ... DG, Riedler, Rosseel, Zojer '13
- recent proposal by Vafa '14

Testing the holographic principle

How general is holography?

- To what extent do (previous) lessons rely on the particular constructions used to date?
- Are they tied to stringy effects and to string theory in particular, or are they general lessons for quantum gravity?
- Does holography apply only to unitary theories?
- Can we establish a flat space holographic dictionary?
the answer appears to be yes - see my current talk and recent papers by Bagchi et al., Barnich et al., Strominger et al., '12-'15

Testing the holographic principle

How general is holography?

- To what extent do (previous) lessons rely on the particular constructions used to date?
- Are they tied to stringy effects and to string theory in particular, or are they general lessons for quantum gravity?
- Does holography apply only to unitary theories?
- Can we establish a flat space holographic dictionary?
- Generic non-AdS holography/higher spin holography? non-trivial hints that it might work at least in $2+1$ dimensions Gary, DG Rashkov '12; Afshar et al '12; Gutperle et al '14-'15; Gary, DG, Prohazka, Rey '14;

Testing the holographic principle

How general is holography?

- To what extent do (previous) lessons rely on the particular constructions used to date?
- Are they tied to stringy effects and to string theory in particular, or are they general lessons for quantum gravity?
- Does holography apply only to unitary theories?
- Can we establish a flat space holographic dictionary?
- Generic non-AdS holography/higher spin holography?
- Address questions above in simple class of 3d toy models
- Exploit gauge theoretic Chern-Simons formulation
- Restrict to kinematic questions, like (asymptotic) symmetries

Outline

Motivation

Holography in 3d
Chern-Simons formulation Asymptotic symmetries
Example: flat space holography

Outline

Motivation

Holography in 3d
Chern-Simons formulation Asymptotic symmetries Example: flat space holography

Outlook - how general is holography?

Clarification of nomenclature

- Conformal CS gravity (Deser, Jackiw, Templeton '82)

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int \mathrm{~d}^{3} x \sqrt{-g} \varepsilon^{\lambda \mu \nu} \Gamma_{\lambda \sigma}^{\rho}\left(\partial_{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\frac{2}{3} \Gamma^{\sigma}{ }_{\mu \tau} \Gamma^{\tau}{ }_{\nu \rho}\right)
$$

0 local physical degrees of freedom

Clarification of nomenclature

- Conformal CS gravity (Deser, Jackiw, Templeton '82)

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int \mathrm{~d}^{3} x \sqrt{-g} \varepsilon^{\lambda \mu \nu} \Gamma_{\lambda \sigma}^{\rho}\left(\partial_{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\frac{2}{3} \Gamma^{\sigma}{ }_{\mu \tau} \Gamma^{\tau}{ }_{\nu \rho}\right)
$$

0 local physical degrees of freedom

- Einstein gravity in CS formulation (Achucarro, Townsend '86; Witten '88)

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right) \sim I_{\mathrm{CS}}(A)-I_{\mathrm{CS}}(\bar{A})
$$

$A, \bar{A}: s l(2)$ connections (sum/diff of Dreibein and spin-connection) 0 local physical degrees of freedom

Clarification of nomenclature

- Conformal CS gravity (Deser, Jackiw, Templeton '82)

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int \mathrm{~d}^{3} x \sqrt{-g} \varepsilon^{\lambda \mu \nu} \Gamma_{\lambda \sigma}^{\rho}\left(\partial_{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\frac{2}{3} \Gamma^{\sigma}{ }_{\mu \tau} \Gamma^{\tau}{ }_{\nu \rho}\right)
$$

0 local physical degrees of freedom

- Einstein gravity in CS formulation (Achucarro, Townsend '86; Witten '88)

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right) \sim I_{\mathrm{CS}}(A)-I_{\mathrm{CS}}(\bar{A})
$$

$A, \bar{A}: s l(2)$ connections (sum/diff of Dreibein and spin-connection) 0 local physical degrees of freedom

- Gravitational CS term in topologically massive gravity (Deser, Jackiw, Templeton '82)

$$
I_{\mathrm{TMG}}=I_{\mathrm{EH}}+I_{\mathrm{CSG}}
$$

$0+0=1$ local physical degree of freedom (massive graviton)

Clarification of nomenclature

- Conformal CS gravity (Deser, Jackiw, Templeton '82)

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int \mathrm{~d}^{3} x \sqrt{-g} \varepsilon^{\lambda \mu \nu} \Gamma_{\lambda \sigma}^{\rho}\left(\partial_{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\frac{2}{3} \Gamma^{\sigma}{ }_{\mu \tau} \Gamma^{\tau}{ }_{\nu \rho}\right)
$$

0 local physical degrees of freedom

- Einstein gravity in CS formulation (Achucarro, Townsend '86; Witten '88)

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right) \sim I_{\mathrm{CS}}(A)-I_{\mathrm{CS}}(\bar{A})
$$

$A, \bar{A}: s l(2)$ connections (sum/diff of Dreibein and spin-connection)
0 local physical degrees of freedom

- Gravitational CS term in topologically massive gravity (Deser, Jackiw, Templeton '82)

$$
I_{\mathrm{TMG}}=I_{\mathrm{EH}}+I_{\mathrm{CSG}}
$$

$0+0=1$ local physical degree of freedom (massive graviton)

- This talk: gravity-like CS theories

CS bulk theory

Action:

$$
I_{\mathrm{CS}}=\frac{k}{4 \pi} \int_{\mathcal{M}}\left\langle A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right\rangle
$$

- k : CS-level
- $\mathcal{M}: 3 \mathrm{~d}$ or $(2+1) \mathrm{d}$ manifold (this talk: filled cylinder or filled torus)
- $A=A_{\mu}^{a} T^{a} \mathrm{~d} x^{\mu}$: (non-abelian) connection 1-form
- \langle,$\rangle : bilinear form$

CS bulk theory

Action:

$$
I_{\mathrm{CS}}=\frac{k}{4 \pi} \int_{\mathcal{M}}\left\langle A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right\rangle
$$

- k : CS-level
- M:3d or $(2+1) \mathrm{d}$ manifold (this talk: filled cylinder or filled torus)
- $A=A_{\mu}^{a} T^{a} \mathrm{~d} x^{\mu}$: (non-abelian) connection 1-form
- \langle,$\rangle : bilinear form$

EOM:

$$
F=\mathrm{d} A+[A, A]=0
$$

Solutions: (locally) gauge-flat connections, $A=g^{-1} \mathrm{~d} g$

CS bulk theory

Action:

$$
I_{\mathrm{CS}}=\frac{k}{4 \pi} \int_{\mathcal{M}}\left\langle A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right\rangle
$$

- k : CS-level
- M:3d or $(2+1) \mathrm{d}$ manifold (this talk: filled cylinder or filled torus)
- $A=A_{\mu}^{a} T^{a} \mathrm{~d} x^{\mu}$: (non-abelian) connection 1-form
- \langle,$\rangle : bilinear form$

EOM:

$$
F=\mathrm{d} A+[A, A]=0
$$

Solutions: (locally) gauge-flat connections, $A=g^{-1} \mathrm{~d} g$

- Chern-Simons theory locally trivial
- Boundary conditions/fall-off behavior crucial

Overview of gravity-like CS theories

(spin-2) gravity

- with negative cosmological constant: $s l(2) \oplus s l(2)$ with suitable bc's
- in flat space: $i s l(2)$ with suitable bc's

Overview of gravity-like CS theories
(spin-2) gravity

- with negative cosmological constant: $s l(2) \oplus s l(2)$ with suitable bc's
- in flat space: $i s l(2)$ with suitable bc's

spin-3 gravity

- with negative cosmological constant: $s l(3) \oplus s l(3)$ with suitable bc's
- in flat space: $i s l(3)$ with suitable bc's

Overview of gravity-like CS theories

 (spin-2) gravity- with negative cosmological constant: $s l(2) \oplus s l(2)$ with suitable bc's
- in flat space: $i s l(2)$ with suitable bc's spin-3 gravity
- with negative cosmological constant: $s l(3) \oplus s l(3)$ with suitable bc's
- in flat space: $i s l(3)$ with suitable bc's generic higher spin/lower spin gravity
- higher spin with negative cosmological constant: some gauge algebra containing $s l(2) \oplus s l(2)$ with suitable bc's (e.g. $s l(N) \oplus s l(N))$
- higher spin in flat space: some gauge algebra containing $i s l(2)$ with suitable bc's (e.g. isl(N))
- higher spin in Lobachevsky/warped AdS/Schrödinger/Lifshitz: some gauge algebra containing $s l(2) \oplus s l(2)$ with suitable bc's
- lower spin: $s l(2) \oplus u(1)$ with suitable bc's

Overview of gravity-like CS theories (spin-2) gravity

- with negative cosmological constant: $s l(2) \oplus s l(2)$ with suitable bc's
- in flat space: isl(2) with suitable bc's spin-3 gravity
- with negative cosmological constant: $s l(3) \oplus s l(3)$ with suitable bc's
- in flat space: isl(3) with suitable bc's generic higher spin/lower spin gravity
- higher spin with negative cosmological constant: some gauge algebra containing $s l(2) \oplus s l(2)$ with suitable bc's (e.g. $s l(N) \oplus \operatorname{sl}(N))$
- higher spin in flat space: some gauge algebra containing $i s l(2)$ with suitable bc's (e.g. $i s l(N))$
- higher spin in Lobachevsky/warped AdS/Schrödinger/Lifshitz: some gauge algebra containing $s l(2) \oplus s l(2)$ with suitable bc's
- lower spin: sl(2) $\oplus u(1)$ with suitable bc's Vasiliev type higher spin gravity
- with negative cosmological constant: $h s(\lambda) \oplus h s(\lambda)$ with suitable bc's
- in flat space: probably exists?

Gravity-like CS with asymptotic boundary

Spin-2: Bañados '94; Spin-3: Henneaux, Rey '10; Campoleoni et al '10

Assume cylinder topology:

radius: ρ
boundary: $\rho \rightarrow \infty$
boundary coord's: x^{i}

Gravity-like CS with asymptotic boundary

Spin-2: Bañados '94; Spin-3: Henneaux, Rey '10; Campoleoni et al '10

Assume cylinder topology:

- Impose fall-off conditions on connection

$$
\lim _{\rho \rightarrow \infty} A\left(\rho, x^{i}\right)=\widehat{A}_{\mu}^{a}\left(\rho, x^{i}\right) T^{a} \mathrm{~d} x^{\mu}+\delta A\left(\rho, x^{i}\right)+\ldots
$$

- Lot of guesswork!
radius: ρ
boundary: $\rho \rightarrow \infty$
boundary coord's: x^{i}

Gravity-like CS with asymptotic boundary

Spin-2: Bañados '94; Spin-3: Henneaux, Rey '10; Campoleoni et al '10

Assume cylinder topology:

- Impose fall-off conditions on connection

$$
\lim _{\rho \rightarrow \infty} A\left(\rho, x^{i}\right)=\widehat{A}_{\mu}^{a}\left(\rho, x^{i}\right) T^{a} \mathrm{~d} x^{\mu}+\delta A\left(\rho, x^{i}\right)+\ldots
$$

- Lot of guesswork!
- Ansatz that works in all cases so far:

$$
A\left(\rho, x^{i}\right)=b^{-1}(\rho)\left(\mathrm{d}+a\left(x^{i}\right)+o(1)\right) b(\rho)
$$

radius: ρ
boundary: $\rho \rightarrow \infty$
boundary coord's: x^{i}

Gravity-like CS with asymptotic boundary

Spin-2: Bañados '94; Spin-3: Henneaux, Rey '10; Campoleoni et al '10

Assume cylinder topology:

- Impose fall-off conditions on connection

$$
\lim _{\rho \rightarrow \infty} A\left(\rho, x^{i}\right)=\widehat{A}_{\mu}^{a}\left(\rho, x^{i}\right) T^{a} \mathrm{~d} x^{\mu}+\delta A\left(\rho, x^{i}\right)+\ldots
$$

- Lot of guesswork!
- Ansatz that works in all cases so far:

$$
A\left(\rho, x^{i}\right)=b^{-1}(\rho)\left(\mathrm{d}+a\left(x^{i}\right)+o(1)\right) b(\rho)
$$

- Radial dependence captured by b
radius: ρ
boundary: $\rho \rightarrow \infty$
boundary coord's: x^{i}

Gravity-like CS with asymptotic boundary
 Spin-2: Bañados '94; Spin-3: Henneaux, Rey '10; Campoleoni et al '10

Assume cylinder

- Impose fall-off conditions on connection topology:

$$
\lim _{\rho \rightarrow \infty} A\left(\rho, x^{i}\right)=\widehat{A}_{\mu}^{a}\left(\rho, x^{i}\right) T^{a} \mathrm{~d} x^{\mu}+\delta A\left(\rho, x^{i}\right)+\ldots
$$

- Lot of guesswork!
- Ansatz that works in all cases so far:

$$
A\left(\rho, x^{i}\right)=b^{-1}(\rho)\left(\mathrm{d}+a\left(x^{i}\right)+o(1)\right) b(\rho)
$$

- Radial dependence captured by b
- Connection $a=\widehat{a}_{i} \mathrm{~d} x^{i}+\delta a_{i} \mathrm{~d} x^{i}$ subject to asymptotic on-shell conditions

$$
F_{i j}=0 \quad \leftrightarrow \quad \mathrm{~d} a+[a, a]=0
$$

boundary coord's: x^{i}

Gravity-like CS with asymptotic boundary
 Spin-2: Bañados '94; Spin-3: Henneaux, Rey '10; Campoleoni et al '10

Assume cylinder topology:

radius: ρ
boundary: $\rho \rightarrow \infty$
boundary coord's: x^{i}

$$
\lim _{\rho \rightarrow \infty} A\left(\rho, x^{i}\right)=\widehat{A}_{\mu}^{a}\left(\rho, x^{i}\right) T^{a} \mathrm{~d} x^{\mu}+\delta A\left(\rho, x^{i}\right)+\ldots
$$

- Impose fall-off conditions on connection
- Lot of guesswork!
- Ansatz that works in all cases so far:

$$
A\left(\rho, x^{i}\right)=b^{-1}(\rho)\left(\mathrm{d}+a\left(x^{i}\right)+o(1)\right) b(\rho)
$$

- Radial dependence captured by b
- Connection $a=\widehat{a}_{i} \mathrm{~d} x^{i}+\delta a_{i} \mathrm{~d} x^{i}$ subject to asymptotic on-shell conditions

$$
F_{i j}=0 \quad \leftrightarrow \quad \mathrm{~d} a+[a, a]=0
$$

- $F_{\rho i}=0$ automatically

Gravity-like CS with asymptotic boundary Spin-2: Bañados '94; Spin-3: Henneaux, Rey '10; Campoleoni et al '10

Assume cylinder topology:

$$
\lim _{\rho \rightarrow \infty} A\left(\rho, x^{i}\right)=\widehat{A}_{\mu}^{a}\left(\rho, x^{i}\right) T^{a} \mathrm{~d} x^{\mu}+\delta A\left(\rho, x^{i}\right)+\ldots
$$

radius: ρ boundary: $\rho \rightarrow \infty$ boundary coord's: x^{i}

- Impose fall-off conditions on connection
- Lot of guesswork!
- Ansatz that works in all cases so far:

$$
A\left(\rho, x^{i}\right)=b^{-1}(\rho)\left(\mathrm{d}+a\left(x^{i}\right)+o(1)\right) b(\rho)
$$

- Radial dependence captured by b
- Connection $a=\widehat{a}_{i} \mathrm{~d} x^{i}+\delta a_{i} \mathrm{~d} x^{i}$ subject to asymptotic on-shell conditions

$$
F_{i j}=0 \quad \leftrightarrow \quad \mathrm{~d} a+[a, a]=0
$$

- $F_{\rho i}=0$ automatically
- Subleading fluctuation terms $o(1)$ irrelevant

(Non-)equivalence of gravity-like CS to gravity

Gravity-like CS:

- Need suitable gauge algebra
- Need appropriate boundary conditions on connection

(Non-)equivalence of gravity-like CS to gravity

Gravity-like CS:

- Need suitable gauge algebra
- Need appropriate boundary conditions on connection
- Need map to metric variables

(Non-)equivalence of gravity-like CS to gravity

Gravity-like CS:

- Need suitable gauge algebra
- Need appropriate boundary conditions on connection
- Need map to metric variables

Spin-2 field:

$$
g_{\mu \nu}=\frac{1}{2} \tilde{\operatorname{tr}}\left(A_{\mu} A_{\nu}\right)
$$

Spin-3 field:

$$
\Phi_{\mu \nu \lambda}=\frac{1}{6} \tilde{\operatorname{tr}}\left(A_{\mu} A_{\nu} A_{\lambda}\right)
$$

etc.

(Non-)equivalence of gravity-like CS to gravity

Gravity-like CS:

- Need suitable gauge algebra
- Need appropriate boundary conditions on connection
- Need map to metric variables

Spin-2 field:

$$
g_{\mu \nu}=\frac{1}{2} \tilde{\operatorname{tr}}\left(A_{\mu} A_{\nu}\right)
$$

Spin-3 field:

$$
\Phi_{\mu \nu \lambda}=\frac{1}{6} \tilde{\operatorname{tr}}\left(A_{\mu} A_{\nu} A_{\lambda}\right)
$$

etc.

- Classically equivalent to gravity(-like) theory
- Probably quantum inequivalent
- Debatable which version is correct at quantum level

Best known example: AdS_{3} spin-2 gravity (Bañados '94)

- Gauge algebra: $s l(2) \oplus s l(2)$

Best known example: AdS_{3} spin-2 gravity (Bañados '94)

- Gauge algebra: $s l(2) \oplus s l(2)$
- Split full connection into left (A) and right (\bar{A}) moving part

Best known example: AdS_{3} spin-2 gravity (Bañados '94)

- Gauge algebra: $s l(2) \oplus s l(2)$
- Split full connection into left (A) and right (\bar{A}) moving part
- Choose

$$
b=e^{\rho L_{0}}
$$

Best known example: AdS_{3} spin-2 gravity (Bañados '94)

- Gauge algebra: $s l(2) \oplus s l(2)$
- Split full connection into left (A) and right (\bar{A}) moving part
- Choose

$$
b=e^{\rho L_{0}}
$$

- Choose

$$
a=(\underbrace{L_{+}}_{\widehat{a}_{+}}+\underbrace{\mathcal{L}\left(x^{+}\right) L_{-}}_{\delta a_{+}}) \mathrm{d} x^{+}+\mathcal{O}\left(e^{-2 \rho}\right)
$$

Best known example: AdS_{3} spin-2 gravity (Bañados '94)

- Gauge algebra: $s l(2) \oplus s l(2)$
- Split full connection into left (A) and right (\bar{A}) moving part
- Choose

$$
b=e^{\rho L_{0}}
$$

- Choose

$$
a=\left(L_{+}+\mathcal{L}\left(x^{+}\right) L_{-}\right) \mathrm{d} x^{+}+\mathcal{O}\left(e^{-2 \rho}\right)
$$

- Full connection (remember, $A=b^{-1}(d+a) b$):

$$
A=\underbrace{L_{0} \mathrm{~d} \rho+e^{\rho} L_{+} \mathrm{d} x^{+}}_{\widehat{A}}+\underbrace{e^{-\rho} \mathcal{L}\left(x^{+}\right) L_{-} \mathrm{d} x^{+}}_{\delta A}+\ldots
$$

Best known example: AdS_{3} spin-2 gravity (Bañados '94)

- Gauge algebra: $s l(2) \oplus s l(2)$
- Split full connection into left (A) and right (\bar{A}) moving part
- Choose

$$
b=e^{\rho L_{0}}
$$

- Choose

$$
a=\left(L_{+}+\mathcal{L}\left(x^{+}\right) L_{-}\right) \mathrm{d} x^{+}+\mathcal{O}\left(e^{-2 \rho}\right)
$$

- Full connection (remember, $A=b^{-1}(d+a) b$):

$$
A=L_{0} \mathrm{~d} \rho+e^{\rho} L_{+} \mathrm{d} x^{+}+e^{-\rho} \mathcal{L}\left(x^{+}\right) L_{-} \mathrm{d} x^{+}+\ldots
$$

- Analogous choices in bar-sector

$$
\bar{A}=b\left(\mathrm{~d}+\left(L_{-}+\overline{\mathcal{L}}\left(x^{-}\right) L_{+}+\ldots\right) \mathrm{d} x^{-}\right) b^{-1}
$$

Best known example: AdS_{3} spin-2 gravity (Bañados '94)

- Gauge algebra: $s l(2) \oplus \operatorname{sl}(2)$
- Split full connection into left (A) and right (\bar{A}) moving part
- Choose

$$
b=e^{\rho L_{0}}
$$

- Choose

$$
a=\left(L_{+}+\mathcal{L}\left(x^{+}\right) L_{-}\right) \mathrm{d} x^{+}+\mathcal{O}\left(e^{-2 \rho}\right)
$$

- Full connection (remember, $A=b^{-1}(d+a) b$):

$$
A=L_{0} \mathrm{~d} \rho+e^{\rho} L_{+} \mathrm{d} x^{+}+e^{-\rho} \mathcal{L}\left(x^{+}\right) L_{-} \mathrm{d} x^{+}+\ldots
$$

- Analogous choices in bar-sector

$$
\bar{A}=b\left(\mathrm{~d}+\left(L_{-}+\overline{\mathcal{L}}\left(x^{-}\right) L_{+}+\ldots\right) \mathrm{d} x^{-}\right) b^{-1}
$$

- Metric:

$$
g_{\mu \nu}=\frac{1}{2} \operatorname{tr}\left(\left(A_{\mu}-\bar{A}_{\mu}\right)\left(A_{\nu}-\bar{A}_{\nu}\right)\right)
$$

Best known example: AdS_{3} spin-2 gravity (Bañados '94)

- Gauge algebra: $s l(2) \oplus s l(2)$
- Split full connection into left (A) and right (\bar{A}) moving part
- Choose

$$
b=e^{\rho L_{0}}
$$

- Choose

$$
a=\left(L_{+}+\mathcal{L}\left(x^{+}\right) L_{-}\right) \mathrm{d} x^{+}+\mathcal{O}\left(e^{-2 \rho}\right)
$$

- Full connection (remember, $A=b^{-1}(d+a) b$):

$$
A=L_{0} \mathrm{~d} \rho+e^{\rho} L_{+} \mathrm{d} x^{+}+e^{-\rho} \mathcal{L}\left(x^{+}\right) L_{-} \mathrm{d} x^{+}+\ldots
$$

- Analogous choices in bar-sector

$$
\bar{A}=b\left(\mathrm{~d}+\left(L_{-}+\overline{\mathcal{L}}\left(x^{-}\right) L_{+}+\ldots\right) \mathrm{d} x^{-}\right) b^{-1}
$$

- Metric:

$$
g_{\mu \nu}=\frac{1}{2} \operatorname{tr}\left(\left(A_{\mu}-\bar{A}_{\mu}\right)\left(A_{\nu}-\bar{A}_{\nu}\right)\right)
$$

- Boundary conditions above = partly gauge-fixed Brown-Henneaux:

$$
g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\mathrm{d} \rho^{2}+2 e^{2 \rho} \mathrm{~d} x^{+} \mathrm{d} x^{-}+\mathcal{L}\left(x^{+}\right)\left(\mathrm{d} x^{+}\right)^{2}+\overline{\mathcal{L}}\left(x^{-}\right)\left(\mathrm{d} x^{-}\right)^{2}+\ldots
$$

Outline

Motivation

Holography in 3d
Chern-Simons formulation
Asymptotic symmetries
Example: flat space holography

Outlook - how general is holography?

Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle

Essentially did this: CS theory with suitable gauge algebra (will not talk about variational principle)

Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions

Essentially did this: $A=b^{-1}(\mathrm{~d}+\widehat{a}+\delta a+o(1)) b$
Still need to choose asymptotic background \widehat{a} and state dependent fluctuations δa

Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's

- Find and classify all constraints
- Construct canonical gauge generators
- Add boundary terms and get (variation of) canonical charges
- Check integrability of canonical charges
- Check finiteness of canonical charges
- Check conservation (in time) of canonical charges
- Calculate Dirac bracket algebra of canonical charges

Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges

Reminder: $A S A=$ quotient algebra of asymptotic symmetries by 'trivial' asymptotic symmetries with zero canonical charges

Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA

Example: semi-classical ASA in spin-3 gravity (Henneaux, Rey '10; Campoleoni, Pfenninger, Fredenhagen, Theisen '10)

$$
\left[W_{n}, W_{m}\right]=\frac{16}{5 c} \sum_{p} L_{p} L_{n+m-p}+\ldots
$$

quantum ASA

$$
\left[W_{n}, W_{m}\right]=\frac{16}{5 c+22} \sum_{p}: L_{p} L_{n+m-p}:+\ldots
$$

Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA

Example:

Afshar et al '12
Discrete set of Newton constant values compatible with unitarity
(3D spin- N gravity in
next-to-principal embedding)
see my talk at MIT March '13

Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Previous Ansatz for connection simplifies above algorithm considerably!

Boundary condition preserving trafos and canonical charges

 Generic (non-)AdS holography in higher spin gravity: see Afshar et al '12- Boundary-condition preserving transformations generated by ϵ :

$$
\delta_{\epsilon} A=\mathrm{d} A+[\epsilon, A]=\mathcal{O}(\delta A)
$$

Boundary condition preserving trafos and canonical charges

 Generic (non-)AdS holography in higher spin gravity: see Afshar et al '12- Boundary-condition preserving transformations generated by ϵ :

$$
\delta_{\epsilon} A=\mathrm{d} A+[\epsilon, A]=\mathcal{O}(\delta A)
$$

- Exploit Ansatz:

$$
\epsilon=b^{-1}(\rho) \varepsilon\left(x^{i}\right) b(\rho)+\ldots
$$

Boundary condition preserving trafos and canonical charges Generic (non-)AdS holography in higher spin gravity: see Afshar et al '12

- Boundary-condition preserving transformations generated by ϵ :

$$
\delta_{\epsilon} A=\mathrm{d} A+[\epsilon, A]=\mathcal{O}(\delta A)
$$

- Exploit Ansatz:

$$
\epsilon=b^{-1}(\rho) \varepsilon\left(x^{i}\right) b(\rho)+\ldots
$$

- Background independent canonical analysis yields canonical currents:

$$
\delta Q[\epsilon]=\frac{k}{2 \pi} \lim _{\rho \rightarrow \infty} \oint\langle\epsilon \delta A\rangle=\frac{k}{2 \pi} \oint\langle\varepsilon \delta a\rangle
$$

Boundary condition preserving trafos and canonical charges Generic (non-)AdS holography in higher spin gravity: see Afshar et al '12

- Boundary-condition preserving transformations generated by ϵ :

$$
\delta_{\epsilon} A=\mathrm{d} A+[\epsilon, A]=\mathcal{O}(\delta A)
$$

- Exploit Ansatz:

$$
\epsilon=b^{-1}(\rho) \varepsilon\left(x^{i}\right) b(\rho)+\ldots
$$

- Background independent canonical analysis yields canonical currents:

$$
\delta Q[\epsilon]=\frac{k}{2 \pi} \lim _{\rho \rightarrow \infty} \oint\langle\epsilon \delta A\rangle=\frac{k}{2 \pi} \oint\langle\varepsilon \delta a\rangle
$$

- Manifestly finite! (all $b(\rho)$ cancel)
- Non-trivial?
- Integrable to canonical charges $Q[\epsilon]$?
- Conserved?

Boundary condition preserving trafos and canonical charges

 Generic (non-)AdS holography in higher spin gravity: see Afshar et al '12- Boundary-condition preserving transformations generated by ϵ :

$$
\delta_{\epsilon} A=\mathrm{d} A+[\epsilon, A]=\mathcal{O}(\delta A)
$$

- Exploit Ansatz:

$$
\epsilon=b^{-1}(\rho) \varepsilon\left(x^{i}\right) b(\rho)+\ldots
$$

- Background independent canonical analysis yields canonical currents:

$$
\delta Q[\epsilon]=\frac{k}{2 \pi} \lim _{\rho \rightarrow \infty} \oint\langle\epsilon \delta A\rangle=\frac{k}{2 \pi} \oint\langle\varepsilon \delta a\rangle
$$

- Manifestly finite! (all $b(\rho)$ cancel)
- Non-trivial?
- Integrable to canonical charges $Q[\epsilon]$?
- Conserved?

If any of these is answered with 'no' then back to square one in algorithm
Otherwise: may have new holographic correspondence!

Outline

Motivation

Holography in 3d
Chern-Simons formulation
Asymptotic symmetries

Example: flat space holography

Outlook - how general is holography?

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)
if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- This is nothing but the BMS_{3} algebra (or $\mathrm{GCA}_{2}, \mathrm{URCA}_{2}, \mathrm{CCA}_{2}$)!

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- This is nothing but the BMS_{3} algebra (or $\mathrm{GCA}_{2}, \mathrm{URCA}_{2}, \mathrm{CCA}_{2}$)!
- Example where it does not work easily: boundary conditions!

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- This is nothing but the BMS_{3} algebra (or $\mathrm{GCA}_{2}, \mathrm{URCA}_{2}, \mathrm{CCA}_{2}$)!
- Example where it does not work easily: boundary conditions!
- Example where it does not work at all: highest weight conditions!

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)
- extrapolate from dS: should be non-unitary (?)

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)
- extrapolate from dS: should be non-unitary (?)
- directly in flat space: both options realized, depending on details of model

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

```
Just take large AdS radius limit of \(10^{4} \mathrm{AdS} / \mathrm{CFT}\) papers?
```

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)
- extrapolate from dS: should be non-unitary (?)
- directly in flat space: both options realized, depending on details of model

Many open issues in flat space holography!

Next few slides: mention a couple of recent results

Overview of selected recent results

- Applying algorithm just described to flat space theories

Barnich, Gonzalez '13; Afshar '13

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity

Bagchi, Detournay, DG '13

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity
- Cosmic evolution from phase transition

Bagchi, Detournay, DG, Simon '13

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity
- Cosmic evolution from phase transition
- (Holographic) entanglement entropy

Bagchi, Basu, DG, Riegler '14

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity
- Cosmic evolution from phase transition
- (Holographic) entanglement entropy
- Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13
Gonzalez, Matulich, Pino, Troncoso '13

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity
- Cosmic evolution from phase transition
- (Holographic) entanglement entropy
- Flat space higher spin gravity
- Unitarity of dual field theory

DG, Riegler, Rosseel '14

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity
- Cosmic evolution from phase transition
- (Holographic) entanglement entropy
- Flat space higher spin gravity
- Unitarity of dual field theory
- Adding chemical potentials

Gary, DG, Riegler, Rosseel '14

Overview of selected recent results

- Applying algorithm just described to flat space theories
- Flat space chiral gravity
- Cosmic evolution from phase transition
- (Holographic) entanglement entropy
- Flat space higher spin gravity
- Unitarity of dual field theory
- Adding chemical potentials
- See backup slides or discuss with me privately!
- Focus here on flat space higher spin gravity

Flat space higher spin gravity

```
Afshar, Bagchi, Fareghbal, DG, Rosseel '13; Gonzalez, Matulich, Pino, Troncoso '13
```

Interacting theories of massless higher spin fields heavily constrained by no-go results!

- Coleman, Mandula '67
- Haag, Lopuszanski, Sohnius '75
- Aragone, Deser '79
- Weinberg, Witten '80
- review: Bekaert, Boulanger, Sundell '10

Vasiliev '90: circumvents no-go's by going to (A)dS
we circumvent them by going to 3d (no local physical degrees of freedom)

Flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel '13; Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13; Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

isl(3) algebra (spin 3 extension of global part of BMS/GCA algebra)

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m} \\
{\left[L_{n}, U_{m}\right] } & =(2 n-m) U_{n+m} \\
{\left[M_{n}, U_{m}\right]=\left[L_{n}, V_{m}\right] } & =(2 n-m) V_{n+m} \\
{\left[U_{n}, U_{m}\right] } & =(n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m} \\
{\left[U_{n}, V_{m}\right] } & =(n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}
\end{aligned}
$$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13; Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

- Same type of boundary conditions as for spin 2:

$$
\mathcal{A}(r, t, \varphi)=b^{-1}(r)(\mathrm{d}+a(t, \varphi)+o(1)) b(r)
$$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13; Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

- Same type of boundary conditions as for spin 2 :

$$
\mathcal{A}(r, t, \varphi)=b^{-1}(r)(\mathrm{d}+a(t, \varphi)+o(1)) b(r)
$$

- Flat space boundary conditions: $b(r)=\exp \left(\frac{1}{2} r M_{-1}\right)$ and

$$
\begin{aligned}
a(t, \varphi)= & \left(M_{1}-M(\varphi) M_{-1}-V(\varphi) V_{-2}\right) \mathrm{d} t \\
& +\left(L_{1}-M(\varphi) L_{-1}-V(\varphi) U_{-2}-L(\varphi) M_{-1}-Z(\varphi) V_{-2}\right) \mathrm{d} \varphi
\end{aligned}
$$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13; Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \boldsymbol{s l}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

- Same type of boundary conditions as for spin 2 :

$$
\mathcal{A}(r, t, \varphi)=b^{-1}(r)(\mathrm{d}+a(t, \varphi)+o(1)) b(r)
$$

- Flat space boundary conditions: $b(r)=\exp \left(\frac{1}{2} r M_{-1}\right)$ and

$$
\begin{aligned}
a(t, \varphi)= & \left(M_{1}-M(\varphi) M_{-1}-V(\varphi) V_{-2}\right) \mathrm{d} t \\
& +\left(L_{1}-M(\varphi) L_{-1}-V(\varphi) U_{-2}-L(\varphi) M_{-1}-Z(\varphi) V_{-2}\right) \mathrm{d} \varphi
\end{aligned}
$$

- spin-2 and spin-3 charges:

$$
Q\left[\varepsilon_{M}, \varepsilon_{L}, \varepsilon_{V}, \varepsilon_{U}\right] \sim \oint\left(\varepsilon_{M}(\varphi) M(\varphi)+\varepsilon_{L}(\varphi) L(\varphi)+\varepsilon_{V}(\varphi) V(\varphi)+\varepsilon_{U}(\varphi) U(\varphi)\right)
$$

I will skip this slide

Defining \langle,$\rangle and \widetilde{\mathrm{tr}}$ using Grassmann trick by Krishnan, Raju, Roy '13

- isl (n) and BMW_{n} have \mathbb{Z}_{2} grading
- even generators $L_{n}, U_{n}, \ldots: \operatorname{ad}[s l(n)] \otimes \mathbb{1}_{2 \times 2}$
- odd generators $M_{n}, V_{n}, \ldots: \epsilon \cdot \operatorname{ad}[s l(n)] \otimes \sigma_{3}$ with $\epsilon^{2}=0$
- reproduces isl(n) algebra from sl(n) algebra
- bilinear form between two generators $G_{n_{1}}, G_{n_{2}}$:

$$
\left\langle G_{n_{1}}, G_{n_{2}}\right\rangle=\frac{\mathrm{d}}{\mathrm{~d} \epsilon} \operatorname{tr}\left(\frac{1}{2} G_{n_{1}} \frac{1}{2} G_{n_{2}} \gamma^{*}\right)
$$

where $\gamma^{*}=\mathbb{1} \otimes \sigma_{3}$

- tilde-trace of product of m generators $G_{n_{1}}, \ldots, G_{n_{m}}$:

$$
\tilde{\operatorname{tr}}\left(\prod_{i=1}^{m} G_{n_{i}}\right)=\frac{1}{2} \operatorname{tr}\left(\prod_{i=1}^{m}\left(\frac{\mathrm{~d}}{\mathrm{~d} \epsilon} G_{n_{i}} \gamma^{*}\right)\right)
$$

- for further details see Gary, DG, Riegler, Rosseel '14

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ' 13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel '13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra
- Obtain new type of W-algebra as extension of BMS ("BMW")

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]=} & (n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right]=} & (n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[U_{n}, U_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{192}{c_{M}}(n-m) \Lambda_{n+m} \\
& -\frac{96\left(c_{L}+\frac{44}{5}\right)}{c_{M}^{2}}(n-m) \Theta_{n+m}+\frac{c_{L}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
{\left[U_{n}, V_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}+\frac{96}{c_{M}}(n-m) \Theta_{n+m} \\
& +\frac{c_{M}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
\Lambda_{n}= & \sum_{p}: L_{p} M_{n-p}:-\frac{3}{10}(n+2)(n+3) M_{n} \quad \Theta_{n}=\sum_{p} M_{p} M_{n-p}
\end{aligned}
$$

other commutators as in $\operatorname{isl}(3)$ with $n \in \mathbb{Z}$

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel '13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra
- Obtain new type of W-algebra as extension of BMS ("BMW")

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]=} & (n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right]=} & (n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[U_{n}, U_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{192}{c_{M}}(n-m) \Lambda_{n+m} \\
& -\frac{96\left(c_{L}+\frac{44}{5}\right)}{c_{M}^{2}}(n-m) \Theta_{n+m}+\frac{c_{L}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
{\left[U_{n}, V_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}+\frac{96}{c_{M}}(n-m) \Theta_{n+m} \\
& +\frac{c_{M}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0}
\end{aligned}
$$

- Note quantum shift and poles in central terms!

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel '13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra
- Obtain new type of W-algebra as extension of BMS ("BMW")

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]=} & (n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right]=} & (n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[U_{n}, U_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{192}{c_{M}}(n-m) \Lambda_{n+m} \\
& -\frac{96\left(c_{L}+\frac{44}{5}\right)}{c_{M}^{2}}(n-m) \Theta_{n+m}+\frac{c_{L}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
{\left[U_{n}, V_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}+\frac{96}{c_{M}}(n-m) \Theta_{n+m} \\
& +\frac{c_{M}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0}
\end{aligned}
$$

- Note quantum shift and poles in central terms!
- Analysis generalizes to flat space contractions of other W-algebras

Outline

Motivation

Holography in 3d
Chern-Simons formulation
Asymptotic symmetries Example: flat space holography

Outlook - how general is holography?
D. Grumiller - How general is holography?

Outlook - how general is holography?

Selected open issues

We have answered an ϵ of the open questions.

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more $\epsilon \mathrm{s}$ for 3d models:

- checks of flat space chiral gravity (Bagchi et al '12-'15)

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more $\epsilon \mathrm{s}$ for 3d models:

- checks of flat space chiral gravity (Bagchi et al '12-'15)
- \exists flat space chiral higher spin gravity? (DG, Riegler, Rosseel '14)

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more $\epsilon \mathrm{s}$ for 3d models:

- checks of flat space chiral gravity (Bagchi et al '12-'15)
- \exists flat space chiral higher spin gravity? (DG, Riegler, Rosseel '14)
- flat space local quantum quench? (Nozaki, Numasawa, Takayanagi '13)

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more $\epsilon \mathrm{s}$ for 3d models:

- checks of flat space chiral gravity (Bagchi et al '12-'15)
- \exists flat space chiral higher spin gravity? (DG, Riegler, Rosseel '14)
- flat space local quantum quench? (Nozaki, Numasawa, Takayanagi '13)
- (holographic) entanglement entropy in other non-CFT contexts?

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more $\epsilon \mathrm{s}$ for 3d models:

- checks of flat space chiral gravity (Bagchi et al '12-'15)
- \exists flat space chiral higher spin gravity? (DG, Riegler, Rosseel '14)
- flat space local quantum quench? (Nozaki, Numasawa, Takayanagi '13)
- (holographic) entanglement entropy in other non-CFT contexts?
- other non-AdS holography examples? (Gary et al '12-'15)

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more $\epsilon \mathrm{s}$ for 3d models:

- checks of flat space chiral gravity (Bagchi et al '12-'15)
- \exists flat space chiral higher spin gravity? (DG, Riegler, Rosseel '14)
- flat space local quantum quench? (Nozaki, Numasawa, Takayanagi '13)
- (holographic) entanglement entropy in other non-CFT contexts?
- other non-AdS holography examples? (Gary et al '12-'15)
- existence of UV-complete 3d theory/no-go result?

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s for 3d models:

- checks of flat space chiral gravity (Bagchi et al '12-'15)
- \exists flat space chiral higher spin gravity? (DG, Riegler, Rosseel '14)
- flat space local quantum quench? (Nozaki, Numasawa, Takayanagi '13)
- (holographic) entanglement entropy in other non-CFT contexts?
- other non-AdS holography examples? (Gary et al '12-'15)
- existence of UV-complete 3d theory/no-go result?
- Dimensions > 3? (Barnich et al '10-'15; Strominger et al '14-'15)
- Flat limit of $\mathrm{AdS}_{5} \times S^{5} / \mathrm{CFT}_{4}$? (Polchinski; Susskind; Giddings '99)
- Many open issues that can and should be addressed!

Thanks for your attention!

Vladimir Bulatov, M.C.Escher Circle Limit III in a rectangle

Selected references to own work
R M. Gary, D. Grumiller, M. Riegler and J. Rosseel, "Flat space (higher spin) gravity with chemical potentials,"
JHEP 1501 (2015) 152, arXiv:1411.3728.
围 A. Bagchi, R. Basu, D. Grumiller and M. Riegler, "Entanglement entropy in Galilean conformal field theories and flat holography," Phys. Rev. Lett. 114 (2015) 111602, arXiv:1410.4089.
目 H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, "Spin-3 Gravity in Three-Dimensional Flat Space," Phys. Rev. Lett. 111 (2013) 121603, arXiv:1307.4768.
(A. Bagchi, S. Detournay, D. Grumiller and J. Simon, "Cosmic Evolution from Phase Transition of Three-Dimensional Flat Space," Phys. Rev. Lett. 111 (2013) 181301, arXiv:1305.2919.
(A. Bagchi, S. Detournay and D. Grumiller, "Flat-Space Chiral Gravity," Phys. Rev. Lett. 109 (2012) 151301, arXiv:1208.1658.

Apply algorithm just described to flat space theories Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle Topologically massive gravity with mixed boundary conditions

$$
I=I_{\mathrm{EH}}+\frac{1}{32 \pi G \mu} \int \mathrm{~d}^{3} x \sqrt{-g} \varepsilon^{\lambda \mu \nu} \Gamma_{\lambda \sigma}^{\rho}\left(\partial_{\mu} \Gamma_{\nu \rho}^{\sigma}+\frac{2}{3} \Gamma_{\mu \tau}^{\sigma} \Gamma_{\nu \rho}^{\tau}\right)
$$

with $\delta g=$ fixed and $\delta K_{L}=$ fixed at the boundary
Deser, Jackiw \& Templeton '82

Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions asymptotically flat adapted to lightlike infinity

$$
(\varphi \sim \varphi+2 \pi)
$$

$$
\begin{aligned}
& \mathrm{d} \bar{s}^{2}=-\mathrm{d} u^{2}-2 \mathrm{~d} u \mathrm{~d} r+r^{2} \mathrm{~d} \varphi^{2} \\
& g_{u u}=h_{u u}+O\left(\frac{1}{r}\right) \\
& g_{u r}=-1+h_{u r} / r+O\left(\frac{1}{r^{2}}\right) \\
& g_{u \varphi}=h_{u \varphi}+O\left(\frac{1}{r}\right) \\
& g_{r r}=h_{r r} / r^{2}+O\left(\frac{1}{r^{3}}\right) \\
& g_{r \varphi}=h_{1}(\varphi)+h_{r \varphi} / r+O\left(\frac{1}{r^{2}}\right) \\
& g_{\varphi \varphi}=r^{2}+\left(h_{2}(\varphi)+u h_{3}(\varphi)\right) r+O(1)
\end{aligned}
$$

Barnich \& Compere '06
Bagchi, Detournay \& DG '12

Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's Obtain canonical boundary charges

$$
\begin{aligned}
& Q_{M_{n}}=\frac{1}{16 \pi G} \int \mathrm{~d} \varphi e^{i n \varphi}\left(h_{u u}+h_{3}\right) \\
& Q_{L_{n}}= \frac{1}{16 \pi G \mu} \int \mathrm{~d} \varphi e^{i n \varphi}\left(h_{u u}+\partial_{u} h_{u r}+\frac{1}{2} \partial_{u}^{2} h_{r r}+h_{3}\right) \\
&+ \frac{1}{16 \pi G} \int \mathrm{~d} \varphi e^{i n \varphi}\left(i n u h_{u u}+i n h_{u r}+2 h_{u \varphi}+\partial_{u} h_{r \varphi}\right. \\
&\left.\quad-\left(n^{2}+h_{3}\right) h_{1}-i n h_{2}-i n \partial_{\varphi} h_{1}\right)
\end{aligned}
$$

Bagchi, Detournay \& DG '12

Apply algorithm just described to flat space theories

Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

with central charges

$$
c_{L}=\frac{3}{\mu G} \quad c_{M}=\frac{3}{G}
$$

Note:

- $c_{L}=0$ in Einstein gravity
- $c_{M}=0$ in conformal Chern-Simons gravity $\left(\mu \rightarrow 0, \mu G=\frac{1}{8 k}\right)$ Flat space chiral gravity!

Apply algorithm just described to flat space theories Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA

Trivial here

Apply algorithm just described to flat space theories Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA

- Straightforward in flat space chiral gravity
- Difficult/impossible otherwise

Apply algorithm just described to flat space theories

Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Monster CFT in flat space chiral gravity
Witten '07
Li, Song \& Strominger '08
Bagchi, Detournay \& DG '12

$$
Z(q)=J(q)=\frac{1}{q}+(1+196883) q+\mathcal{O}\left(q^{2}\right)
$$

Note: $\ln 196883 \approx 12.2=4 \pi+$ quantum corrections

Apply algorithm just described to flat space theories Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify We are happy!

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:

Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)
- Gaps in spectra match

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)
- Gaps in spectra match
- Microscopic counting of $S_{\text {FSC }}$ reproduced by chiral Cardy formula

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)
- Gaps in spectra match
- Microscopic counting of S_{FSC} reproduced by chiral Cardy formula
- No issues with logarithmic modes/log CFTs

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)
- Gaps in spectra match
- Microscopic counting of $S_{\text {FSC }}$ reproduced by chiral Cardy formula
- No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

$$
Z(q)=J(q)=\frac{1}{q}+196884 q+\mathcal{O}\left(q^{2}\right)
$$

Cosmic evolution from phase transition

Flat space version of Hawking-Page phase transition

Hot flat space

$$
\mathrm{d} s^{2}= \pm \mathrm{d} t^{2}+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \varphi^{2}
$$

Cosmic evolution from phase transition
Flat space version of Hawking-Page phase transition
Hot flat space

$$
(\varphi \sim \varphi+2 \pi)
$$

$$
\mathrm{d} s^{2}= \pm \mathrm{d} t^{2}+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \varphi^{2}
$$

$$
\mathrm{d} s^{2}= \pm \mathrm{d} \tau^{2}+\frac{(E \tau)^{2} \mathrm{~d} x^{2}}{1+(E \tau)^{2}}+\left(1+(E \tau)^{2}\right)\left(\mathrm{d} y+\frac{(E \tau)^{2}}{1+(E \tau)^{2}} \mathrm{~d} x\right)^{2}
$$

Flat space cosmology

$$
\left(y \sim y+2 \pi r_{0}\right)
$$

Bagchi, Detournay, DG \& Simon '13

Flat space cosmologies (Cornalba \& Costa '02)

- Start with BTZ in AdS:

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{R_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

Flat space cosmologies (Cornalba \& Costa '02)

- Start with BTZ in AdS:

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{R_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- Consider region between the two horizons $r_{-}<r<R_{+}$

Flat space cosmologies (Cornalba \& Costa '02)

- Start with BTZ in AdS:

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{R_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- Consider region between the two horizons $r_{-}<r<R_{+}$
- Take the $\ell \rightarrow \infty$ limit (with $R_{+}=\ell \hat{r}_{+}$and $r_{-}=r_{0}$)

$$
\mathrm{d} s^{2}=\hat{r}_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} t^{2}-\frac{r^{2} \mathrm{~d} r^{2}}{\hat{r}_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{\hat{r}_{+} r_{0}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

Flat space cosmologies (Cornalba \& Costa '02)

- Start with BTZ in AdS:

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{R_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- Consider region between the two horizons $r_{-}<r<R_{+}$
- Take the $\ell \rightarrow \infty$ limit (with $R_{+}=\ell \hat{r}_{+}$and $r_{-}=r_{0}$)

$$
\mathrm{d} s^{2}=\hat{r}_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} t^{2}-\frac{r^{2} \mathrm{~d} r^{2}}{\hat{r}_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{\hat{r}_{+} r_{0}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

- Go to Euclidean signature ($t=i \tau_{E}, \hat{r}_{+}=-i r_{+}$)

$$
\mathrm{d} s^{2}=r_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} \tau_{\mathrm{E}}^{2}+\frac{r^{2} \mathrm{~d} r^{2}}{r_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{0}}{r^{2}} \mathrm{~d} \tau_{E}\right)^{2}
$$

Flat space cosmologies (Cornalba \& Costa '02)

- Start with BTZ in AdS:

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{R_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- Consider region between the two horizons $r_{-}<r<R_{+}$
- Take the $\ell \rightarrow \infty$ limit (with $R_{+}=\ell \hat{r}_{+}$and $r_{-}=r_{0}$)

$$
\mathrm{d} s^{2}=\hat{r}_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} t^{2}-\frac{r^{2} \mathrm{~d} r^{2}}{\hat{r}_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{\hat{r}_{+} r_{0}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

- Go to Euclidean signature ($t=i \tau_{E}, \hat{r}_{+}=-i r_{+}$)

$$
\mathrm{d} s^{2}=r_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} \tau_{\mathrm{E}}^{2}+\frac{r^{2} \mathrm{~d} r^{2}}{r_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{0}}{r^{2}} \mathrm{~d} \tau_{E}\right)^{2}
$$

- Note peculiarity: no conical singularity, but asymptotic conical defect!

Flat space cosmologies (Cornalba \& Costa '02)

- Start with BTZ in AdS:

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{R_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- Consider region between the two horizons $r_{-}<r<R_{+}$
- Take the $\ell \rightarrow \infty$ limit (with $R_{+}=\ell \hat{r}_{+}$and $r_{-}=r_{0}$)

$$
\mathrm{d} s^{2}=\hat{r}_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} t^{2}-\frac{r^{2} \mathrm{~d} r^{2}}{\hat{r}_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{\hat{r}_{+} r_{0}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

- Go to Euclidean signature $\left(t=i \tau_{E}, \hat{r}_{+}=-i r_{+}\right)$

$$
\mathrm{d} s^{2}=r_{+}^{2}\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \mathrm{d} \tau_{\mathrm{E}}^{2}+\frac{r^{2} \mathrm{~d} r^{2}}{r_{+}^{2}\left(r^{2}-r_{0}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{0}}{r^{2}} \mathrm{~d} \tau_{E}\right)^{2}
$$

- Note peculiarity: no conical singularity, but asymptotic conical defect!

Question we want to address:
Is FSC or HFS the preferred Euclidean saddle?

Euclidean path integral

Evaluate Euclidean partition function in semi-classical limit

$$
Z(T, \Omega)=\int \mathcal{D} g e^{-\Gamma[g]}=\sum_{g_{c}} e^{-\Gamma\left[g_{c}(T, \Omega)\right]} \times Z_{\text {fluct }}
$$

boundary conditions specified by temperature T and angular velocity Ω

Euclidean path integral

Evaluate Euclidean partition function in semi-classical limit

$$
Z(T, \Omega)=\int \mathcal{D} g e^{-\Gamma[g]}=\sum_{g_{c}} e^{-\Gamma\left[g_{c}(T, \Omega)\right]} \times Z_{\text {fluct. }}
$$

boundary conditions specified by temperature T and angular velocity Ω
Two Euclidean saddle points in same ensemble if

- same temperature $T=1 / \beta$ and angular velocity Ω
- obey flat space boundary conditions
- solutions without conical singularities

Euclidean path integral

Evaluate Euclidean partition function in semi-classical limit

$$
Z(T, \Omega)=\int \mathcal{D} g e^{-\Gamma[g]}=\sum_{g_{c}} e^{-\Gamma\left[g_{c}(T, \Omega)\right]} \times Z_{\text {fluct. }}
$$

boundary conditions specified by temperature T and angular velocity Ω
Two Euclidean saddle points in same ensemble if

- same temperature $T=1 / \beta$ and angular velocity Ω
- obey flat space boundary conditions
- solutions without conical singularities

Periodicities fixed:

$$
\left(\tau_{E}, \varphi\right) \sim\left(\tau_{E}+\beta, \varphi+\beta \Omega\right) \sim\left(\tau_{E}, \varphi+2 \pi\right)
$$

Results

On-shell action:

$$
\Gamma=-\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{3} x \sqrt{g} R-\underbrace{\frac{1}{16 \pi G_{N}}}_{\frac{1}{2} \mathrm{GHY}!} \int \mathrm{d}^{2} x \sqrt{\gamma} K
$$

Results

On-shell action:

$$
\Gamma=-\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{3} x \sqrt{g} R-\underbrace{\frac{1}{16 \pi G_{N}}}_{\frac{1}{2} \mathrm{GHY}!} \int \mathrm{d}^{2} x \sqrt{\gamma} K
$$

Free energy:

$$
F_{\mathrm{HFS}}=-\frac{1}{8 G_{N}} \quad F_{\mathrm{FSC}}=-\frac{r_{+}}{8 G_{N}}
$$

Results

On-shell action:

$$
\Gamma=-\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{3} x \sqrt{g} R-\underbrace{\frac{1}{16 \pi G_{N}}}_{\frac{1}{2} \mathrm{GHY}!} \int \mathrm{d}^{2} x \sqrt{\gamma} K
$$

Free energy:

$$
F_{\mathrm{HFS}}=-\frac{1}{8 G_{N}} \quad F_{\mathrm{FSC}}=-\frac{r_{+}}{8 G_{N}}
$$

- $r_{+}>1$ FSC dominant saddle
- $r_{+}<1$: HFS dominant saddle

Critical temperature:

$$
T_{c}=\frac{1}{2 \pi r_{0}}=\frac{\Omega}{2 \pi}
$$

HFS "melts" into FSC at $T>T_{c}$

Entanglement entropy of Galilean CFTs and flat space holography

 Bagchi, Basu, DG, Riegler '14
Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{L}}{6} \ln \frac{\ell_{x}}{a}}_{\text {like CFT }}+\underbrace{\frac{c_{M}}{6} \frac{\ell_{y}}{\ell_{x}}}_{\text {like grav anomaly }}
$$

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{L}}{6} \ln \frac{\ell_{x}}{a}}_{\text {like CFT }}+\underbrace{\frac{c_{M}}{6} \frac{\ell_{y}}{\ell_{x}}}_{\text {like grav anomaly }}
$$

with

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0}
\end{aligned}
$$

and

- ℓ_{x} : spatial distance
- ℓ_{y} : temporal distance
- a : UV cutoff (lattice size)

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{L}}{6} \ln \frac{\ell_{x}}{a}}_{\text {like CFT }}
$$

- flat space chiral gravity: $c_{L} \neq 0, c_{M}=0$

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{M}}{6} \frac{\ell_{y}}{\ell_{x}}}_{\text {like grav anomaly }}
$$

- flat space chiral gravity: $c_{L} \neq 0, c_{M}=0$
- flat space Einstein gravity: $c_{L}=0, c_{M} \neq 0$

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCTT}}=\underbrace{\frac{c_{L}}{6} \ln \frac{\ell_{x}}{a}}_{\text {like CFT }}+\underbrace{\frac{c_{M}}{6} \frac{\ell_{y}}{\ell_{x}}}_{\text {like grav anomaly }}
$$

- flat space chiral gravity: $c_{L} \neq 0, c_{M}=0$
- flat space Einstein gravity: $c_{L}=0, c_{M} \neq 0$

Same results obtained holographically!

- Using methods similar to Ammon, Castro Iqbal '13, de Boer, Jottar '13, Castro, Detournay, Iqbal, Perlmutter '14
- geodesics \Rightarrow Wilson lines

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Limit $c_{M} \rightarrow 0$ requires further contraction: $U_{n} \rightarrow c_{M} U_{n}$

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Limit $c_{M} \rightarrow 0$ requires further contraction: $U_{n} \rightarrow c_{M} U_{n}$ Doubly contracted algebra has unitary representations:

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m} \\
{\left[L_{n}, U_{m}\right] } & =(2 n-m) U_{n+m} \\
{\left[M_{n}, U_{m}\right]=\left[L_{n}, V_{m}\right] } & =(2 n-m) V_{n+m} \\
{\left[U_{n}, U_{m}\right] } & \propto\left[U_{n}, V_{m}\right]=96(n-m) \sum_{p} M_{p} M_{n-p}
\end{aligned}
$$

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Limit $c_{M} \rightarrow 0$ requires further contraction: $U_{n} \rightarrow c_{M} U_{n}$ Doubly contracted algebra has unitary representations:

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m} \\
{\left[L_{n}, U_{m}\right] } & =(2 n-m) U_{n+m} \\
{\left[M_{n}, U_{m}\right]=\left[L_{n}, V_{m}\right] } & =(2 n-m) V_{n+m} \\
{\left[U_{n}, U_{m}\right] } & \propto\left[U_{n}, V_{m}\right]=96(n-m) \sum_{p} M_{p} M_{n-p}
\end{aligned}
$$

Higher spin states decouple and become null states!

Unitarity in flat space

Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Unitarity in flat space
Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Example:
Flat space chiral gravity
Bagchi, Detournay, DG, 1208.1658

Unitarity in flat space
Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Example:

Minimal model holography
Gaberdiel, Gopakumar, 1011.2986, 1207.6697

Unitarity in flat space
Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Example:

Flat space higher spin gravity (Galilean W_{3} algebra)
Afshar, Bagchi, Fareghbal, DG and Rosseel, 1307.4768
Gonzalez, Matulich, Pino and Troncoso, 1307.5651

Unitarity in flat space

Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

> Compatible with "spirit" of various no-go results in higher dimensions!

Unitarity in flat space

Generic flat space W-algebras DG, Riegler, Rosseel '14

1. NO-GO:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Compatible with "spirit" of various no-go results in higher dimensions!

2. YES-GO:

There is (at least) one counter-example, namely a Vasiliev-type of theory, where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...

Unitarity in flat space
Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists... - ...but its existence is at least not ruled out by the no-go result!

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!
- If it exists, this must be its asymptotic symmetry algebra:

$$
\begin{aligned}
{\left[\mathcal{V}_{m}^{i}, \mathcal{V}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{V}_{m+n}^{i+j-2 r}+c_{\mathcal{V}}^{i}(m) \delta^{i j} \delta_{m+n, 0} \\
{\left[\mathcal{V}_{m}^{i}, \mathcal{W}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{W}_{m+n}^{i+j-2 r} \quad\left[\mathcal{W}_{m}^{i}, \mathcal{W}_{n}^{j}\right]=0
\end{aligned}
$$

where

$$
c_{\mathcal{V}}^{i}(m)=\#(i, m) \times c \quad \text { and } \quad c=-\bar{c}
$$

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!
- If it exists, this must be its asymptotic symmetry algebra:

$$
\begin{aligned}
{\left[\mathcal{V}_{m}^{i}, \mathcal{V}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{V}_{m+n}^{i+j-2 r}+c_{\mathcal{V}}^{i}(m) \delta^{i j} \delta_{m+n, 0} \\
{\left[\mathcal{V}_{m}^{i}, \mathcal{W}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{W}_{m+n}^{i+j-2 r} \quad\left[\mathcal{W}_{m}^{i}, \mathcal{W}_{n}^{j}\right]=0
\end{aligned}
$$

where

$$
c_{\mathcal{V}}^{i}(m)=\#(i, m) \times c \quad \text { and } \quad c=-\bar{c}
$$

- Vacuum descendants $\mathcal{W}_{m}^{i}|0\rangle$ are null states for all i and m !

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel ' 14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!
- If it exists, this must be its asymptotic symmetry algebra:

$$
\begin{aligned}
{\left[\mathcal{V}_{m}^{i}, \mathcal{V}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{V}_{m+n}^{i+j-2 r}+c_{\mathcal{V}}^{i}(m) \delta^{i j} \delta_{m+n, 0} \\
{\left[\mathcal{V}_{m}^{i}, \mathcal{W}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{W}_{m+n}^{i+j-2 r} \quad\left[\mathcal{W}_{m}^{i}, \mathcal{W}_{n}^{j}\right]=0
\end{aligned}
$$

where

$$
c_{\mathcal{V}}^{i}(m)=\#(i, m) \times c \quad \text { and } \quad c=-\bar{c}
$$

- Vacuum descendants $\mathcal{W}_{m}^{i}|0\rangle$ are null states for all i and m !
- AdS parent theory: no trace anomaly, but gravitational anomaly (Like in conformal Chern-Simons gravity \rightarrow Vasiliev type analogue?)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!

Line-element with spin-2 and spin-3 chemical potentials:

$$
\begin{gathered}
g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\left(r^{2}\left(\mu_{\mathrm{L}}^{2}-4 \mu_{\mathrm{U}}^{\prime \prime} \mu_{\mathrm{U}}+3 \mu_{\mathrm{U}}^{\prime 2}+4 \mathcal{M} \mu_{\mathrm{U}}^{2}\right)+r g_{u u}^{(r)}+g_{u u}^{(0)}+g_{u u}^{\left(0^{\prime}\right)}\right) \mathrm{d} u^{2}+ \\
\left(r^{2} \mu_{\mathrm{L}}-r \mu_{\mathrm{M}}^{\prime}+\mathcal{N}\left(1+\mu_{\mathrm{M}}\right)+8 \mathcal{Z} \mu_{\mathrm{V}}\right) 2 \mathrm{~d} u \mathrm{~d} \varphi-\left(1+\mu_{\mathrm{M}}\right) 2 \mathrm{~d} r \mathrm{~d} u+r^{2} \mathrm{~d} \varphi^{2} \\
g_{u u}^{(0)}=\mathcal{M}\left(1+\mu_{\mathrm{M}}\right)^{2}+2\left(1+\mu_{\mathrm{M}}\right)\left(\mathcal{N} \mu_{\mathrm{L}}+12 \mathcal{V}_{\mu \mathrm{V}}+16 \mathcal{Z}_{\left.\mu_{\mathrm{U}}\right)}\right. \\
+16 \mathcal{Z} \mu_{\mathrm{L}} \mu_{\mathrm{V}}+\frac{4}{3}\left(\mathcal{M}^{2} \mu_{\mathrm{V}}^{2}+4 \mathcal{M} \mu_{\mathrm{U}} \mu_{\mathrm{V}}+\mathcal{N}^{2} \mu_{\mathrm{U}}^{2}\right)
\end{gathered}
$$

Spin-3 field with same chemical potentials:

$$
\begin{aligned}
& \Phi_{\mu \nu \lambda} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu} \mathrm{d} x^{\lambda}=\Phi_{u u u} \mathrm{~d} u^{3}+\Phi_{r u u} \mathrm{~d} r \mathrm{~d} u^{2}+\Phi_{u u \varphi} \mathrm{~d} u^{2} \mathrm{~d} \varphi-\left(2 \mu_{\mathrm{U}} r^{2}-r \mu_{\mathrm{V}}^{\prime}+2 \mathcal{N} \mu_{\mathrm{V}}\right) \mathrm{d} r \mathrm{~d} u \mathrm{~d} \varphi \\
& \quad+\mu_{\mathrm{V}} \mathrm{~d} r^{2} \mathrm{~d} u-\left(\mu_{\mathrm{U}}^{\prime} r^{3}-\frac{1}{3} r^{2}\left(\mu_{\mathrm{V}}^{\prime \prime}-\mathcal{M} \mu_{\mathrm{V}}+4 \mathcal{N} \mu_{\mathrm{U}}\right)+r \mathcal{N} \mu_{\mathrm{V}}^{\prime}-\mathcal{N}^{2} \mu_{\mathrm{V}}\right) \mathrm{d} u \mathrm{~d} \varphi^{2} \\
& \Phi_{u u u}= r^{2}\left[2\left(1+\mu_{\mathrm{M}}\right) \mu_{\mathrm{U}}\left(\mathcal{M} \mu_{\mathrm{L}}-4 \mathcal{V} \mu_{\mathrm{U}}\right)-\frac{1}{3} \mu_{\mathrm{L}}^{2}\left(\mathcal{M} \mu_{\mathrm{V}}-4 \mathcal{N} \mu_{\mathrm{U}}\right)+16 \mu_{\mathrm{L}} \mu_{\mathrm{U}}\left(\mathcal{V} \mu_{\mathrm{V}}+\mathcal{Z} \mu_{\mathrm{U}}\right)-\frac{4}{3} \mathcal{M} \mu_{\mathrm{U}}^{2}\left(\mathcal{M} \mu_{\mathrm{V}}\right.\right. \\
&+\left.\left.2 \mathcal{N} \mu_{\mathrm{U}}\right)\right]+2 \mathcal{V}\left(1+\mu_{\mathrm{M}}\right)^{3}+\frac{2}{3}\left(1+\mu_{\mathrm{M}}\right)^{2}\left(6 \mathcal{Z} \mu_{\mathrm{L}}+\mathcal{M}^{2} \mu_{\mathrm{V}}+2 \mathcal{M} \mathcal{N} \mu_{\mathrm{U}}\right)+16 \mu_{\mathrm{L}} \mu_{\mathrm{V}}^{2}\left(\mathcal{N} \mathcal{V}-\frac{1}{3} \mathcal{M} \mathcal{Z}\right) \\
&+ \frac{2}{3}\left(1+\mu_{\mathrm{M}}\right)\left(\left(\mathcal{N} \mu_{\mathrm{L}}+16 \mathcal{Z} \mu_{\mathrm{U}}\right)\left(2 \mathcal{M} \mu_{\mathrm{V}}+\mathcal{N} \mu_{\mathrm{U}}\right)+12 \mathcal{M} \mathcal{V} \mu_{\mathrm{V}}^{2}\right)+\frac{64}{3} \mathcal{Z} \mu_{\mathrm{U}} \mu_{\mathrm{V}}\left(\mathcal{N} \mu_{\mathrm{L}}+12 \mathcal{V} \mu_{\mathrm{V}}+12 \mathcal{Z} \mu_{\mathrm{U}}\right) \\
&+\mathcal{N}^{2} \mu_{\mathrm{L}}^{2} \mu_{\mathrm{V}}+64 \mathcal{V}^{2} \mu_{\mathrm{V}}^{3}-\frac{8}{27}\left(\mathcal{M}^{3} \mu_{\mathrm{V}}^{3}-\mathcal{N}^{3} \mu_{\mathrm{U}}^{3}\right)-\frac{4}{9} \mathcal{M} \mathcal{N} \mu_{\mathrm{U}} \mu_{\mathrm{V}}\left(4 \mathcal{M} \mu_{\mathrm{V}}+5 \mathcal{N} \mu_{\mathrm{U}}\right)+\sum_{n=0}^{3} r^{n} \Phi_{u u u}^{\left(r_{u}^{n}\right)}
\end{aligned}
$$

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

[^0]
Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

[^1]
Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

[^2]
Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

[^0]: D. Grumiller - How general is holography?

[^1]: D. Grumiller - How general is holography?

[^2]: D. Grumiller - How general is holography?

