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Fundamental forces (xkcd 1489)

“Of these four forces, there’s one we don’t really understand.” “Is it the
weak force or the strong–” “It’s gravity.”

I Newton–Einstein world: Gravity best understood force

I Bohr–Schrödinger world: Gravity least understood force

Main goal: understand quantum gravity
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Motivation

Holography in 3d
Chern–Simons formulation
Asymptotic symmetries
Example: flat space holography

Outlook - how general is holography?
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General motivations

I Quantum gravity
I Address conceptual issues of quantum gravity

I Black holes (thermodynamics, evaporation, information loss, microstate
counting, entanglement entropy, firewalls, ...)

I Holography
I Holographic principle realized in Nature? (yes/no)

I Quantum gravity via AdS/CFT? (define quantum gravity in AdS by
constructing/postulating dual CFT)

I How general is holography? (non-unitary holography, higher spin
holography, flat space holography, non-AdS holography, ...)

I Applications (will not address them in my talk)
I Gauge gravity correspondence (non-abelian plasmas, condensed matter)
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Testing the holographic principle

How general is holography?

I To what extent do (previous) lessons rely on the particular
constructions used to date?

I Are they tied to stringy effects and to string theory in particular, or
are they general lessons for quantum gravity?

I Does holography apply only to unitary theories?

I Can we establish a flat space holographic dictionary?

I Generic non-AdS holography/higher spin holography?
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How general is holography?

I To what extent do (previous) lessons rely on the particular
constructions used to date?

I Are they tied to stringy effects and to string theory in particular, or
are they general lessons for quantum gravity?

I Does holography apply only to unitary theories?

I Can we establish a flat space holographic dictionary?

I Generic non-AdS holography/higher spin holography?

see numerous talks at KITP workshop “Bits, Branes, Black Holes” 2012

and at ESI workshop “Higher Spin Gravity” 2012
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constructions used to date?

I Are they tied to stringy effects and to string theory in particular, or
are they general lessons for quantum gravity?

I Does holography apply only to unitary theories?

I Can we establish a flat space holographic dictionary?
I Generic non-AdS holography/higher spin holography?

I originally holography motivated by unitarity

I plausible AdS/CFT-like correspondence could work non-unitarily
I AdS/log CFT first example of non-unitary holography DG, (Jackiw),

Johansson ’08; Skenderis, Taylor, van Rees ’09; Henneaux, Martinez,

Troncoso ’09; Maloney, Song, Strominger ’09; DG, Sachs/Hohm ’09;

Gaberdiel, DG, Vassilevich ’10; ... DG, Riedler, Rosseel, Zojer ’13

I recent proposal by Vafa ’14
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Testing the holographic principle

How general is holography?

I To what extent do (previous) lessons rely on the particular
constructions used to date?

I Are they tied to stringy effects and to string theory in particular, or
are they general lessons for quantum gravity?

I Does holography apply only to unitary theories?

I Can we establish a flat space holographic dictionary?

I Generic non-AdS holography/higher spin holography?

the answer appears to be yes — see my current talk and recent papers by
Bagchi et al., Barnich et al., Strominger et al., ’12-’15
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Testing the holographic principle

How general is holography?

I To what extent do (previous) lessons rely on the particular
constructions used to date?

I Are they tied to stringy effects and to string theory in particular, or
are they general lessons for quantum gravity?

I Does holography apply only to unitary theories?

I Can we establish a flat space holographic dictionary?

I Generic non-AdS holography/higher spin holography?

non-trivial hints that it might work at least in 2+1 dimensions
Gary, DG Rashkov ’12; Afshar et al ’12; Gutperle et al ’14-’15; Gary, DG,
Prohazka, Rey ’14; ...
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Testing the holographic principle

How general is holography?

I To what extent do (previous) lessons rely on the particular
constructions used to date?

I Are they tied to stringy effects and to string theory in particular, or
are they general lessons for quantum gravity?

I Does holography apply only to unitary theories?

I Can we establish a flat space holographic dictionary?

I Generic non-AdS holography/higher spin holography?

I Address questions above in simple class of 3d toy models

I Exploit gauge theoretic Chern–Simons formulation

I Restrict to kinematic questions, like (asymptotic) symmetries
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Clarification of nomenclature

I Conformal CS gravity (Deser, Jackiw, Templeton ’82)

ICSG =
k

4π

∫
d3x
√
−g ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)
0 local physical degrees of freedom

I Einstein gravity in CS formulation (Achucarro, Townsend ’86; Witten ’88)

IEH =
1

16πGN

∫
d3x
√
−g
(
R+

2

`2
)
∼

A, Ā: sl(2) connections (sum/diff of Dreibein and spin-connection)

I in topologically massive gravity
(Deser, Jackiw, Templeton ’82)

ITMG = IEH +

0 + 0 = 1 local physical degree of freedom (massive graviton)

I This talk: gravity-like CS theories
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CS bulk theory

Action:

ICS =
k

4π

∫
M
〈A ∧ dA+ 2

3 A ∧A ∧A〉

I k: CS-level

I M: 3d or (2+1)d manifold (this talk: filled cylinder or filled torus)

I A = AaµT
a dxµ: (non-abelian) connection 1-form

I 〈, 〉: bilinear form

EOM:
F = dA+ [A, A] = 0

Solutions: (locally) gauge-flat connections, A = g−1 dg

I Chern–Simons theory locally trivial

I Boundary conditions/fall-off behavior crucial
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Overview of gravity-like CS theories

(spin-2) gravity
I with negative cosmological constant: sl(2)⊕ sl(2) with suitable bc’s
I in flat space: isl(2) with suitable bc’s

spin-3 gravity
I with negative cosmological constant: sl(3)⊕ sl(3)
I in flat space: isl(3)

generic higher spin/lower spin gravity
I higher spin with negative cosmological constant: some gauge algebra

containing sl(2)⊕ sl(2) (e.g. sl(N)⊕ sl(N))
I higher spin in flat space: some gauge algebra containing isl(2)

(e.g. isl(N))
I higher spin in Lobachevsky/warped AdS/Schrödinger/Lifshitz: some

gauge algebra containing sl(2)⊕ sl(2)
I lower spin: sl(2)⊕ u(1)

Vasiliev type higher spin gravity
I with negative cosmological constant: hs(λ)⊕ hs(λ) with suitable bc’s
I in flat space: probably exists?
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Gravity-like CS with asymptotic boundary
Spin-2: Bañados ’94; Spin-3: Henneaux, Rey ’10; Campoleoni et al ’10

Assume cylinder
topology:

radius: ρ
boundary: ρ→∞

boundary coord’s: xi

I Impose fall-off conditions on connection

lim
ρ→∞

A(ρ, xi) = Âaµ(ρ, xi)︸ ︷︷ ︸
asympt. bg.

T a dxµ+δA(ρ, xi)︸ ︷︷ ︸
state dep.

+ . . .

I Lot of guesswork!

I Ansatz that works in all cases so far:

A(ρ, xi) = b−1(ρ)
(

d+a(xi) + o(1)
)
b(ρ)

I Radial dependence captured by b

I Connection a = âi dxi + δai dxi subject to
asymptotic on-shell conditions

Fij = 0 ↔ da+ [a, a] = 0

I Fρi = 0 automatically

I Subleading fluctuation terms o(1) irrelevant
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I Connection a = âi dxi + δai dxi subject to
asymptotic on-shell conditions

Fij = 0 ↔ da+ [a, a] = 0

I Fρi = 0 automatically

I Subleading fluctuation terms o(1) irrelevant

D. Grumiller — How general is holography? Holography in 3d 11/37



Gravity-like CS with asymptotic boundary
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Assume cylinder
topology:

radius: ρ
boundary: ρ→∞

boundary coord’s: xi

I Impose fall-off conditions on connection

lim
ρ→∞

A(ρ, xi) = Âaµ(ρ, xi)T a dxµ+δA(ρ, xi)+. . .

I Lot of guesswork!

I Ansatz that works in all cases so far:

A(ρ, xi) = b−1(ρ)
(

d+a(xi) + o(1)
)
b(ρ)

I Radial dependence captured by b

I Connection a = âi dxi + δai dxi subject to
asymptotic on-shell conditions

Fij = 0 ↔ da+ [a, a] = 0

I Fρi = 0 automatically

I Subleading fluctuation terms o(1) irrelevant
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(Non-)equivalence of gravity-like CS to gravity

Gravity-like CS:

I Need suitable gauge algebra

I Need appropriate boundary conditions on connection

I Need map to metric variables

Spin-2 field:

gµν =
1

2
t̃r
(
AµAν

)
Spin-3 field:

Φµνλ =
1

6
t̃r
(
AµAνAλ

)
etc.

I Classically equivalent to gravity(-like) theory

I Probably quantum inequivalent

I Debatable which version is correct at quantum level
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Best known example: AdS3 spin-2 gravity (Bañados ’94)

I Gauge algebra: sl(2)⊕ sl(2)

I Split full connection into left (A) and right (Ā) moving part
I Choose

b = eρL0

I Choose
a =

I Full connection (remember, A = b−1(d+ a)b):

A =

I Analogous choices in bar-sector

Ā = b
(

d+(L− + L̄(x−)L+ + . . . ) dx−
)
b−1

I Metric:

gµν =
1

2
tr
(
(Aµ − Āµ)(Aν − Āν)

)
I Boundary conditions above = partly gauge-fixed Brown–Henneaux:

gµν dxµ dxν = dρ2 + 2e2ρ dx+ dx− + L(x+) (dx+)2 + L̄(x−) (dx−)2 + . . .
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Ā = b
(

d+(L− + L̄(x−)L+ + . . . ) dx−
)
b−1

I Metric:

gµν =
1

2
tr
(
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Outline

Motivation

Holography in 3d
Chern–Simons formulation
Asymptotic symmetries
Example: flat space holography

Outlook - how general is holography?
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Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle

Essentially did this: CS theory with suitable gauge algebra (will not
talk about variational principle)

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory

8. If unhappy with result go back to previous items and modify

Previous Ansatz for connection simplifies
above algorithm considerably!
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Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

Essentially did this: A = b−1
(

d+â+ δa+ o(1)
)
b

Still need to choose asymptotic background â and state dependent
fluctuations δa

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA
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Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s

I Find and classify all constraints
I Construct canonical gauge generators
I Add boundary terms and get (variation of) canonical charges
I Check integrability of canonical charges
I Check finiteness of canonical charges
I Check conservation (in time) of canonical charges
I Calculate Dirac bracket algebra of canonical charges

4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Previous Ansatz for connection simplifies
above algorithm considerably!
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Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

Reminder: ASA = quotient algebra of asymptotic symmetries by
‘trivial’ asymptotic symmetries with zero canonical charges
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6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory

8. If unhappy with result go back to previous items and modify

Previous Ansatz for connection simplifies
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Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA

Example: semi-classical ASA in spin-3 gravity (Henneaux, Rey ’10;
Campoleoni, Pfenninger, Fredenhagen, Theisen ’10)

[Wn, Wm] =
16

5c

∑
p

LpLn+m−p + . . .

quantum ASA

[Wn, Wm] =
16

5c+ 22

∑
p

: LpLn+m−p : + . . .

6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Previous Ansatz for connection simplifies
above algorithm considerably!
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Holographic algorithm from bulk point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA

Example:

0.0 0.2 0.4 0.6 0.8 1.0
Α0

5

10

15

20

25

c

Afshar et al ’12
Discrete set of Newton
constant values compatible
with unitarity
(3D spin-N gravity in
next-to-principal embedding)
see my talk at MIT March ’13

7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Previous Ansatz for connection simplifies
above algorithm considerably!
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Boundary condition preserving trafos and canonical charges
Generic (non-)AdS holography in higher spin gravity: see Afshar et al ’12

I Boundary-condition preserving transformations generated by ε:

δεA = dA+ [ε, A] = O(δA)

I Exploit Ansatz:
ε = b−1(ρ) ε(xi) b(ρ) + . . .

I Background independent canonical analysis yields canonical currents:

δQ[ε] =
k

2π
lim
ρ→∞

∮
〈ε δA〉 =

k

2π

∮
〈ε δa〉

I Manifestly finite! (all b(ρ) cancel)
I Non-trivial?
I Integrable to canonical charges Q[ε]?
I Conserved?

If any of these is answered with ‘no’ then back to square one in algorithm

Otherwise: may have new holographic correspondence!
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Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?
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Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?

I Works straightforwardly sometimes, otherwise not

I Example where it works nicely: asymptotic symmetry algebra
I Take linear combinations of Virasoro generators Ln, L̄n

Ln = Ln − L̄−n Mn =
1

`

(
Ln + L̄−n

)
I Make Inönü–Wigner contraction `→∞ on ASA

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Mn, Mm] = 0

I This is nothing but the BMS3 algebra (or GCA2, URCA2, CCA2)!
I Example where it does not work easily: boundary conditions!
I Example where it does not work at all: highest weight conditions!
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I Works straightforwardly sometimes, otherwise not
I Example where it works nicely: asymptotic symmetry algebra
I Take linear combinations of Virasoro generators Ln, L̄n

Ln = Ln − L̄−n Mn =
1

`

(
Ln + L̄−n

)
I Make Inönü–Wigner contraction `→∞ on ASA

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Mn, Mm] = 0

I This is nothing but the BMS3 algebra (or GCA2, URCA2, CCA2)!

I Example where it does not work easily: boundary conditions!
I Example where it does not work at all: highest weight conditions!
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Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?

Not in general! Must (also) work intrinsically in flat space!
Interesting example:

I unitarity of flat space quantum gravity

I extrapolate from AdS: should be unitary (?)

I extrapolate from dS: should be non-unitary (?)

I directly in flat space: both options realized, depending on details of
model

Many open issues in flat space holography!

Next few slides: mention a couple of recent results
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if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?

Not in general! Must (also) work intrinsically in flat space!
Interesting example:

I unitarity of flat space quantum gravity

I extrapolate from AdS: should be unitary (?)

I extrapolate from dS: should be non-unitary (?)

I directly in flat space: both options realized, depending on details of
model

Many open issues in flat space holography!

Next few slides: mention a couple of recent results
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Overview of selected recent results

I Applying algorithm just described to flat space theories

Barnich, Gonzalez ’13; Afshar ’13

I Flat space chiral gravity

I Cosmic evolution from phase transition

I (Holographic) entanglement entropy

II Unitarity of dual field theory

I Adding chemical potentials

I See backup slides or discuss with me privately!

I Focus here on flat space higher spin gravity
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Flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel ’13; Gonzalez, Matulich, Pino, Troncoso ’13

Interacting theories of massless higher spin fields
heavily constrained by no-go results!

I Coleman, Mandula ’67
I Haag, Lopuszanski, Sohnius ’75
I Aragone, Deser ’79
I Weinberg, Witten ’80
I ...
I review: Bekaert, Boulanger, Sundell ’10

Vasiliev ’90: circumvents no-go’s by going to (A)dS

we circumvent them by going to 3d (no local physical degrees of freedom)

I AdS gravity in CS formulation: spin 2 → spin 3 ∼ sl(2)→ sl(3)
I Flat space: similar!

Sflat
CS =

k

4π

∫
CS(A)

with isl(3) connection (ea = “zuvielbein”)

A = eaTa + ωaJa Ta = (Mn, Vm) Ja = (Ln, Um)

I Same type of boundary conditions as for spin 2:

A(r, t, ϕ) = b−1(r)
(

d+a(t, ϕ) + o(1)
)
b(r)

I Flat space boundary conditions: b(r) = exp (1
2 rM−1) and

a(t, ϕ) =
(
M1 −M(ϕ)M−1 − V (ϕ)V−2

)
dt

+
(
L1 −M(ϕ)L−1 − V (ϕ)U−2 − L(ϕ)M−1 − Z(ϕ)V−2

)
dϕ

I spin-2 and spin-3 charges:

Q[εM , εL, εV , εU ] ∼
∮ (

εM (ϕ)M(ϕ)+εL(ϕ)L(ϕ)+εV (ϕ)V (ϕ)+εU (ϕ)U(ϕ)
)
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I will skip this slide
Defining 〈, 〉 and t̃r using Grassmann trick by Krishnan, Raju, Roy ’13

I isl(n) and BMWn have Z2 grading

I even generators Ln, Un, ...: ad[sl(n)]⊗ 1l2×2

I odd generators Mn, Vn, ...: ε · ad[sl(n)]⊗ σ3 with ε2 = 0

I reproduces isl(n) algebra from sl(n) algebra

I bilinear form between two generators Gn1 , Gn2 :

〈Gn1 , Gn2〉 =
d

dε
tr
(

1
2Gn1

1
2Gn2γ

∗)
where γ∗ = 1l⊗ σ3

I tilde-trace of product of m generators Gn1 , ..., Gnm :

t̃r
( m∏
i=1

Gni

)
=

1

2
tr
( m∏
i=1

( d

dε
Gniγ

∗))
I for further details see Gary, DG, Riegler, Rosseel ’14
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Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ’13

I Do either Brown–Henneaux type of analysis or İnönü–Wigner
contraction of two copies of quantum W3-algebra

I Obtain new type of W -algebra as extension of BMS (“BMW”)

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Un, Um] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m +
192

cM
(n−m)Λn+m

−
96
(
cL+ 44

5

)
c2M

(n−m)Θn+m +
cL
12

n(n2 − 1)(n2 − 4) δn+m, 0

[Un, Vm] = (n−m)(2n2 + 2m2 − nm− 8)Mn+m +
96

cM
(n−m)Θn+m

+
cM
12

n(n2 − 1)(n2 − 4) δn+m, 0

I Note quantum shift and poles in central terms!

I Analysis generalizes to flat space contractions of other W -algebras
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Λn =
∑
p

: LpMn−p : − 3
10

(n+ 2)(n+ 3)Mn Θn =
∑
p

MpMn−p

other commutators as in isl(3) with n ∈ Z

I Note quantum shift and poles in central terms!
I Analysis generalizes to flat space contractions of other W -algebras
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contraction of two copies of quantum W3-algebra

I Obtain new type of W -algebra as extension of BMS (“BMW”)

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Un, Um] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m +
192

cM
(n−m)Λn+m

−
96
(
cL+ 44

5

)
c2M

(n−m)Θn+m +
cL
12

n(n2 − 1)(n2 − 4) δn+m, 0

[Un, Vm] = (n−m)(2n2 + 2m2 − nm− 8)Mn+m +
96

cM
(n−m)Θn+m

+
cM
12

n(n2 − 1)(n2 − 4) δn+m, 0

I Note quantum shift and poles in central terms!

I Analysis generalizes to flat space contractions of other W -algebras

D. Grumiller — How general is holography? Holography in 3d 22/37



Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ’13

I Do either Brown–Henneaux type of analysis or İnönü–Wigner
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Outline

Motivation

Holography in 3d
Chern–Simons formulation
Asymptotic symmetries
Example: flat space holography

Outlook - how general is holography?
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Selected open issues

We have answered an ε of the open questions.

Here are a few more εs for 3d models:
I checks of flat space chiral gravity (Bagchi et al ’12-’15)
I ∃ flat space chiral higher spin gravity? (DG, Riegler, Rosseel ’14)
I flat space local quantum quench? (Nozaki, Numasawa, Takayanagi ’13)
I (holographic) entanglement entropy in other non-CFT contexts?
I other non-AdS holography examples? (Gary et al ’12-’15)
I existence of UV-complete 3d theory/no-go result?
I ...

I Dimensions > 3? (Barnich et al ’10-’15; Strominger et al ’14-’15)

I Flat limit of AdS5 × S5/CFT4? (Polchinski; Susskind; Giddings ’99)

I Many open issues that can and should be addressed!
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Thanks for your attention!

Vladimir Bulatov, M.C.Escher Circle Limit III in a rectangle
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
Topologically massive gravity with mixed boundary conditions

I = IEH +
1

32πGµ

∫
d3x
√
−g ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)
with δg = fixed and δKL = fixed at the boundary
Deser, Jackiw & Templeton ’82

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory

8. If unhappy with result go back to previous items and modify
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions

asymptotically flat adapted to lightlike infinity (ϕ ∼ ϕ+ 2π)

ds̄2 = −du2 − 2 dudr + r2 dϕ2

guu = huu +O(1
r )

gur = −1 + hur/r +O( 1
r2 )

guϕ = huϕ +O(1
r )

grr = hrr/r
2 +O( 1

r3 )

grϕ = h1(ϕ) + hrϕ/r +O( 1
r2 )

gϕϕ = r2 + (h2(ϕ) + uh3(ϕ))r +O(1)

Barnich & Compere ’06
Bagchi, Detournay & DG ’12

3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s

Obtain canonical boundary charges

QMn =
1

16πG

∫
dϕeinϕ

(
huu + h3

)
QLn =

1

16πGµ

∫
dϕeinϕ

(
huu + ∂uhur + 1

2∂
2
uhrr + h3

)
+

1

16πG

∫
dϕeinϕ

(
inuhuu + inhur + 2huϕ + ∂uhrϕ

− (n2 + h3)h1 − inh2 − in∂ϕh1

)
Bagchi, Detournay & DG ’12

4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Mn, Mm] = 0

with central charges

cL =
3

µG
cM =

3

G

Note:
I cL = 0 in Einstein gravity
I cM = 0 in conformal Chern–Simons gravity (µ→ 0, µG = 1

8k )
Flat space chiral gravity!
Bagchi, Detournay & DG ’12

5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify
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Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA
Trivial here

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory

8. If unhappy with result go back to previous items and modify
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Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA
I Straightforward in flat space chiral gravity
I Difficult/impossible otherwise

7. Identify/constrain dual field theory

8. If unhappy with result go back to previous items and modify
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory
Monster CFT in flat space chiral gravity
Witten ’07
Li, Song & Strominger ’08
Bagchi, Detournay & DG ’12

Z(q) = J(q) =
1

q
+ (1 + 196883) q +O(q2)

Note: ln 196883 ≈ 12.2 = 4π + quantum corrections

8. If unhappy with result go back to previous items and modify
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Apply algorithm just described to flat space theories
Flat space Einstein and chiral gravity

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

We are happy!
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Flat space chiral gravity
Bagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 '
chiral extremal CFT with central charge c = 24

ICSG =
k

4π

∫ (
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)
I Trace and gravitational anomalies match
I Perturbative states match (Virasoro descendants of vacuum)
I Gaps in spectra match
I Microscopic counting of SFSC reproduced by chiral Cardy formula
I No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =
1

q
+ 196884 q +O(q2)
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Cosmic evolution from phase transition
Flat space version of Hawking–Page phase transition

Hot flat space (ϕ ∼ ϕ+ 2π)

ds2 = ±dt2 + dr2 + r2 dϕ2
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Cosmic evolution from phase transition
Flat space version of Hawking–Page phase transition

Hot flat space (ϕ ∼ ϕ+ 2π)

ds2 = ±dt2 + dr2 + r2 dϕ2

ds2 = ±dτ2 +
(Eτ)2 dx2

1 + (Eτ)2
+
(
1 + (Eτ)2

) (
dy +

(Eτ)2

1 + (Eτ)2
dx
)2

Flat space cosmology (y ∼ y + 2πr0)
Bagchi, Detournay, DG & Simon ’13
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Flat space cosmologies (Cornalba & Costa ’02)

I Start with BTZ in AdS:

ds2 = −
(r2 −R2

+)(r2 − r2
−)

r2`2
dt2+

r2`2 dr2

(r2 −R2
+)(r2 − r2

−)
+r2

(
dϕ−R+r−

`r2
dt
)2

I Consider region between the two horizons r− < r < R+

I Take the `→∞ limit (with R+ = `r̂+ and r− = r0)

ds2 = r̂2
+

(
1− r2

0

r2

)
dt2 − r2 dr2

r̂2
+ (r2 − r2

0)
+ r2

(
dϕ− r̂+r0

r2
dt
)2

I Go to Euclidean signature (t = iτE , r̂+ = −ir+)

ds2 = r2
+

(
1− r2

0

r2

)
dτ2

E +
r2 dr2

r2
+ (r2 − r2

0)
+ r2

(
dϕ− r+r0

r2
dτE

)2
I Note peculiarity: no conical singularity, but asymptotic conical defect!

Is FSC or HFS the preferred Euclidean saddle?

Question we want to address:
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Euclidean path integral

Evaluate Euclidean partition function in semi-classical limit

Z(T, Ω) =

∫
Dg e−Γ[g] =

∑
gc

e−Γ[gc(T,Ω)] × Zfluct.

boundary conditions specified by temperature T and angular velocity Ω

Two Euclidean saddle points in same ensemble if

I same temperature T = 1/β and angular velocity Ω

I obey flat space boundary conditions

I solutions without conical singularities

Periodicities fixed:

(τE , ϕ) ∼ (τE + β, ϕ+ βΩ) ∼ (τE , ϕ+ 2π)
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Results

On-shell action:

Γ = − 1

16πGN

∫
d3x
√
g R− 1

16πGN︸ ︷︷ ︸
1
2

GHY!

∫
d2x
√
γ K

Free energy:

FHFS = − 1

8GN
FFSC = − r+

8GN

I r+ > 1: FSC dominant saddle

I r+ < 1: HFS dominant saddle

Critical temperature:

Tc =
1

2πr0
=

Ω

2π

HFS “melts” into FSC at T > Tc
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Entanglement entropy of Galilean CFTs and flat space holography
Bagchi, Basu, DG, Riegler ’14

Using methods similar to CFT:

SGCFT
EE =

cL
6

ln
`x
a︸ ︷︷ ︸

like CFT

+
cM
6

`y
`x︸ ︷︷ ︸

like grav anomaly

I flat space chiral gravity: cL 6= 0, cM = 0

I flat space Einstein gravity: cL = 0, cM 6= 0

Same results obtained holographically!

I Using methods similar to Ammon, Castro Iqbal ’13, de Boer, Jottar
’13, Castro, Detournay, Iqbal, Perlmutter ’14

I geodesics ⇒ Wilson lines
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Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:
I Unitarity in GCA requires cM = 0 (see paper for caveats!)

I Non-triviality requires then cL 6= 0
I Generalization to contracted higher spin algebras straightforward
I All of them contain GCA as subalgebra
I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un
Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)
∑
p

MpMn−p

Higher spin states decouple and become null states!
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Unitarity in flat space
Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?
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1. NO–GO:
Generically (see paper) you can have only two out of three:
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Example:
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1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Example:
Flat space higher spin gravity (Galilean W3 algebra)
Afshar, Bagchi, Fareghbal, DG and Rosseel, 1307.4768
Gonzalez, Matulich, Pino and Troncoso, 1307.5651

Compatible with “spirit” of various
no-go results in higher dimensions!
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Unitarity in flat space
Flat space W∞-algebra compatible with unitarity DG, Riegler, Rosseel ’14

I We do not know if flat space chiral higher spin gravity exists...

I ...but its existence is at least not ruled out by the no-go result!
I If it exists, this must be its asymptotic symmetry algebra:

[
V im,Vjn

]
=

b i+j2 c∑
r=0

gij2r(m,n)V i+j−2r
m+n + ciV(m) δij δm+n,0

[
V im,Wj

n

]
=

b i+j2 c∑
r=0

gij2r(m,n)W i+j−2r
m+n

[
W i
m,Wj

n

]
= 0

where
ciV(m) = #(i, m) × c and c = −c̄

I Vacuum descendants W i
m|0〉 are null states for all i and m!

I AdS parent theory: no trace anomaly, but gravitational anomaly
(Like in conformal Chern–Simons gravity → Vasiliev type analogue?)
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Unitarity in flat space
Flat space W∞-algebra compatible with unitarity DG, Riegler, Rosseel ’14

I We do not know if flat space chiral higher spin gravity exists...
I ...but its existence is at least not ruled out by the no-go result!
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Adding chemical potentials Gary, DG, Riegler, Rosseel ’14

Long story short:

Au → Au + µ

Works nicely in Chern–Simons formulation!
Interesting novel phase transitions of zeroth/first order:
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Adding chemical potentials Gary, DG, Riegler, Rosseel ’14

Long story short:
Au → Au + µ

Works nicely in Chern–Simons formulation!
Line-element with spin-2 and spin-3 chemical potentials:

gµν dxµ dxν =
(
r2 (µ2

L − 4µ′′UµU + 3µ′ 2U + 4Mµ2
U

)
+ r g(r)

uu + g(0)
uu + g(0′)

uu

)
du2+(

r2µL − rµ′M +N (1 + µM) + 8ZµV

)
2 du dϕ− (1 + µM) 2 dr du+ r2 dϕ2

g
(0)
uu =M(1 + µM)

2
+ 2(1 + µM)

(
NµL + 12VµV + 16ZµU

)
+ 16ZµLµV + 4

3

(
M2

µ
2
V + 4MNµUµV +N2

µ
2
U

)
Spin-3 field with same chemical potentials:

Φµνλ dx
µ

dx
ν

dx
λ

= Φuuu du
3

+ Φruu dr du
2

+ Φuuϕ du
2

dϕ−
(
2µUr

2 − rµ′
V + 2NµV

)
dr du dϕ

+ µV dr
2

du−
(
µ
′
Ur

3 − 1
3
r
2
(µ

′′
V −MµV + 4NµU) + rNµ′

V −N
2
µV
)

du dϕ
2

Φuuu = r
2 [

2(1 + µM)µU(MµL − 4VµU)− 1
3
µ
2
L(MµV − 4NµU) + 16µLµU(VµV + ZµU)− 4

3
Mµ

2
U(MµV

+ 2NµU)
]

+ 2V(1 + µM)
3

+ 2
3

(1 + µM)
2(

6ZµL +M2
µV + 2MNµU

)
+ 16µLµ

2
V(NV − 1

3
MZ)

+ 2
3

(1 + µM)
(
(NµL + 16ZµU)(2MµV +NµU) + 12MVµ2

V

)
+ 64

3
ZµUµV(NµL + 12VµV + 12ZµU)

+N2
µ
2
LµV + 64V2

µ
3
V −

8
27

(M3
µ
3
V −N

3
µ
3
U)− 4

9
MNµUµV(4MµV + 5NµU) +

∑3

n=0
r
n

Φ
(rn)
uuu

Interesting novel phase transitions of zeroth/first order:
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