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We show that cosmological topologically massive gravity at the chiral point allows not
only Brown—-Henneaux boundary conditions as consistent boundary conditions, but also
slightly more general ones which encompass the logarithmic primary found in J. High
Energy Phys. 07 (2008) 134 as well as all its descendants.
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1. Introduction

Cosmological topologically massive gravity! (CTMG) is a three-dimensional theory
of gravity that exhibits gravitons?? and black holes.* With the sign convention of
Ref. 5 its action is given by

1
1. d®z/—g - AUV TP
CTMG = 6 G/ x {R—i— QME A
e 2 g T
X 8p,F vp + g]-—‘ ;J,TF vp ’ (1)
where the negative cosmological constant is parametrized by A = —1/¢2. If the
constants p and ¢ satisfy the condition

wl =1, (2)
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the theory is called “CTMG at the chiral point.” The condition (2) is special,
because one of the central charges of the dual boundary CFT vanishes: ¢, = 0,
CR 75 0.

This observation was the motivation for Ref. 6 to consider CTMG at the chiral
point in some detail. In that work the theory (1) with (2) was dubbed “chiral grav-
ity,” assuming that all solutions obey the Brown-Henneaux boundary conditions.”
Moreover, it was conjectured that CTMG at the chiral point is a chiral theory
and that the local physical degree of freedom, i.e. the topologically massive gravi-
ton, disappears. These statements were disputed in Ref. 8, which engendered a lot
of recent activity concerning CTMG.?% 20 In particular, the present authors con-
structed explicitly® a physical mode not considered in Ref. 6 using their formalism.
This mode, which we call the “logarithmic primary,” violates the Brown-Henneaux
boundary conditions. These results were confirmed very recently in Ref. 20, where
one of the descendants of the logarithmic primary was considered. It was found that
this descendant (and all successive descendants) can be made consistent with the
Brown-Henneaux boundary conditions by a diffeomorphism. Thus, these modes are
present in classical CTMG (in addition to the standard boundary gravitons), even
if Brown—Henneaux boundary conditions are imposed. The latest development is
a simple classical proof?! of the chirality of the generators of diffeomorphisms at
ul =1, concurring with previous results.®

In the conclusions of Ref. 21 it was speculated that perhaps there are consistent
boundary conditions other than the ones by Brown and Henneaux for CTMG at
the chiral point. It is the purpose of this note to show that this is indeed the case
and that the new set of boundary conditions encompasses the logarithmic primary.

2. Beyond Brown—Henneaux

We follow as closely as possible the notation and the logical flow of Ref. 21. Any met-
ric consistent with the boundary conditions to be imposed below must be asymp-
totic to AdSs3, which in Poincaré coordinates is given by

(3)

gﬁfs dztdz? = 02 (—da:"’da:_ i dy2> )

Y2
where the boundary is located at y = 0. The Brown-Henneaux boundary conditions
then require that fluctuations h,, of the metric about (3) fall off as

hiy =0@1) hyo =0(1) hyy=0(y)
hom=0(1) hy=0(y)|. (4)
hyy = O(1)

By O(x) we mean that the corresponding fluctuation metric component behaves at
most proportionally to x in the small y limit.
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We now define suitable boundary conditions that encompass the logarithmic
primary and its descendants. Let us first recall the form of the logarithmic pri-
mary and see how the Brown-Henneaux boundary conditions need to be weakened.
Translating the result (3.3) of Ref. 5 into Poincaré coordinates yields schematically®

new v —\2 — 2 2
hyy"dztdz” ~ O(logy)(dz™)" + O(ylogy)dx™dy + O(y~ logy)dy~. (5)
Evidently the logarithmic primary behaves as follows:
h2Y = O(logy), h" = O(ylogy), hys™ = O(y*logy). (6)

From (4) we see that the Brown-Henneaux boundary conditions for these three
components are

hoo=0(1), h_y=0(y), hy=0(1). (7)

It is clear that (6) is incompatible with (7). However, only the first two conditions
of (3) have to be weakened logarithmically to encompass the logarithmic primary.
Therefore, we propose the following set of boundary conditions®:

e =0() M =00) kg =0()
h2Y = O(logy) h" = O(ylogy) | - ()
hy = O(1)
Let us determine the diffeomorphisms

Guv = gﬁfs + hziw = LY = gy = g;?;is + hziwv (9)

which preserve these boundary conditions, i.e. we require that iLE?,W should also
have the fall-off behavior postulated in (8). Calculating the generator ¢(* with this
requirement yields

(H=etat) - Lo 1 Oyt logy), (10
(= (@) - 3O2eT + O, (11)
2

¢ = L (st @) + 0 (7)) + OWP). (12)

Remarkably, the only difference to the Brown—Henneaux case is the possibility
of an O(y*logy) behavior for the sub-subleading term in the ¢(* component as
opposed to O(y*); see e.g. (5)—(8) in Ref. 21. Thus, there are transformations that

aThe coordinates in that work are related to the coordinates here as follows: z+ = (¢ F 7)/2,
Yy~ e P

bThe proposal (8) may be compared with footnote 3 of Ref. 21: it is not necessary to weaken the
boundary conditions of all components h4+ to O(Iny) (see first sentence) and it is not sufficient
to take only h—_ to be O(Iny) (see second sentence).
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preserve the new set of boundary conditions (8) but not the Brown-Henneaux set of
boundary conditions (4). These new transformations must still be considered pure
gauge because of their rapid fall-off near the boundary.

Thus, we end up with the following situation. The suitable boundary conditions
for encompassing the logarithmic primary are given by (8) rather than by (4).
These are preserved by more gauge transformations than the Brown-Henneaux
conditions, but exhibit the same asymptotic symmetries. Since the isometry algebra
of AdSs is part of the transformations that preserve (8), and since the descendants
are produced by acting with this algebra, we automatically demonstrate that all
descendants of A"V fulfill (8).

3. Boundary Stress Tensor and Asymptotic Symmetry Generators

It is also important that all metrics fulfilling (8) have well-defined generators of the
asymptotic symmetries. This can be shown as follows. We compute the boundary
stress tensor along the lines of Ref. 5 and find that it reduces to the Kraus—Larsen

result?2:
1
Tov =157 hiey ~ O(1), (13)
T _ =0, (14)
T, =0. (15)

Note that the result above coincides with (10)—(12) of Ref. 21 for u¢ = 1. The off-
diagonal contribution 7'y _ vanishes after one imposes constraints from the equa-
tions of motion. The generators of the asymptotic symmetry group become

Q) = gy [ datrer ~ o) (16)

Since no divergences arise, the generators (16) are well defined.

Thus, we conclude that there are indeed consistent boundary conditions (8)
that go beyond Brown-Henneaux and that allow for the logarithmic primary and
all its descendants. Because of the analysis in Sec. 4 of Ref. 5 this result might have
been anticipated: there it was shown that the logarithmic primary is consistent
with the requirement of space—time being asymptotically AdS and that the ensuing
boundary stress tensor is finite, traceless and chiral.

We close by noting that there are other examples where the Brown—Henneaux
boundary conditions need to be weakened logarithmically to encompass physically
interesting solutions.?® The boundary conditions of Ref. 23 are not identical to the
ones considered in the present note.
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