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Main message

I Near horizon boundary action for 3-dimensional black holes

SNH[Φ+, Φ−] =

∫
dt dσ

(
Π+Φ̇+ + Π−Φ̇− −HNH(Φ+, Φ−)

)

I Scalar fields Φ± denote left/right movers along the horizon

I Scalar fields are self-dual (Floreanini–Jackiw-like)

Π ∼ Φ′

I Near horizon Hamilton density is total derivative

HNH(Φ) ∼ ζΦ′

Manifestation of “softness” of near horizon excitations

Purpose of talk: explain and derive results summarized above
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Einstein gravity in three dimensions as Chern–Simons theory

Einstein gravity in three dimensions useful toy model:

IEH3[g] =
1

16πG

∫
M

d3x
√
−g
(
R+

2

`2

)
+ Î∂M

I no local physical degrees of freedom ⇒ simple!

I rotating (BTZ) black hole solutions analogous to Kerr

ds2 = −
(r2 − r2

+)(r2 − r2
−)

`2r2
dt2+

`2r2 dr2

(r2 − r2
+)(r2 − r2

−)
+r2

(
dϕ−r+r−

`r2
dt
)2

I Brown–Henneaux asymptotic symmetries: 2 Virasoros (AdS3/CFT2)

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n) δn+m, 0 c =

3`

2G

= 6k

I Gauge theoretic formulation as Chern–Simons theory [k = `/(4G)]

ICS[A] =
k

4π

∫
M

Tr
(
A ∧ dA+ 2

3 A ∧A ∧A
)

+ I∂M

SO(2, 2) connection A usually split into two SL(2,R) connections; drop all ± decorations & work with single sector

Daniel Grumiller — Near horizon dynamics of three dimensional black holes Hamiltonian reduction 7/33



Einstein gravity in three dimensions as Chern–Simons theory

Einstein gravity in three dimensions useful toy model:

IEH3[g] =
1

16πG

∫
M

d3x
√
−g
(
R+

2

`2

)
+ Î∂M
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+ Î∂M

I no local physical degrees of freedom ⇒ simple!
I rotating (BTZ) black hole solutions analogous to Kerr

ds2 = −
(r2 − r2

+)(r2 − r2
−)

`2r2
dt2+

`2r2 dr2

(r2 − r2
+)(r2 − r2

−)
+r2

(
dϕ−r+r−

`r2
dt
)2

I Brown–Henneaux asymptotic symmetries: 2 Virasoros (AdS3/CFT2)

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n) δn+m, 0 c =

3`

2G
= 6k

I Gauge theoretic formulation as Chern–Simons theory [k = `/(4G)]

ICS[A] =
k

4π

∫
M

Tr
(
A ∧ dA+ 2

3 A ∧A ∧A
)

+ I∂M

SO(2, 2) connection A usually split into two SL(2,R) connections; drop all ± decorations & work with single sector

Daniel Grumiller — Near horizon dynamics of three dimensional black holes Hamiltonian reduction 7/33



Hamiltonian analysis of Chern–Simons theory

I Hamiltonian action of Chern–Simons theory on cylinder
adapted coordinates: r: radius, σ ∼ σ + 2π: angle, t: time

ICS[A] =
k

4π

∫
M

Tr
(
ArȦσ −AσȦr + 2AtFσr

)
+ I∂M

I constraint Fσr = 0 locally solved by

Ai = G−1∂iG G ∈ SL(2, R)

I gauge ∂σAr = A′r = 0 implies G = g(t, σ)b(t, r)

Aσ = b−1aσb aσ = g−1g′ Ar = b−1∂rb

I for formulating boundary conditions related convenient Ansatz:

A(t, σ, r) = b−1(r)
(

d+a(t, σ)
)
b(r) a = at dt+ aσ dσ

with vanishing variation δb = 0 and allowed variations δa 6= 0
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Holonomies and boundary action

I locally Chern–Simons is trivial, but globally holonomies can exist

I encode holonomies in (non-)periodicity properties of group element g

g(t, σ+2π) = h g(t, σ) h ∈ SL(2, R) Trh = Tr
(
P exp

∮
aσ dσ

)
assume for simplicity time-independence of h

I Hamiltonian action decomposes into three terms

ICS[A] = − k

4π

∫
∂M

dtdσTr
(
g′g−1ġg−1

)
− k

12π

∫
M

Tr
(
G−1 dG

)3
+I∂M

I Gauss decomposition G = eXL+eΦL0eY L− yields boundary action

ICS[Φ, X, Y ] = − k

4π

∫
∂M

dt dσ
(

1
2 Φ̇Φ′ − 2eΦX ′Ẏ

)
+ I∂M

used standard basis for SL(2, R): [Ln, Lm] = (n−m)Ln+m for n,m = 0,±1

also used Polyakov–Wiegmann identity to show b-independence of action and chose b = 1 at ∂M
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)
− k

12π

∫
M

Tr
(
G−1 dG

)3
+I∂M

I Gauss decomposition G = eXL+eΦL0eY L− yields boundary action

ICS[Φ, X, Y ] = − k

4π

∫
∂M

dt dσ
(

1
2 Φ̇Φ′ − 2eΦX ′Ẏ
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Near horizon boundary conditions (metric formulation)

so far have not imposed any boundary conditions

I consider near horizon expansion

ds2 = −κ2r2 dt2+dr2+ `2

4

(
J + + J −

)2
dσ2+κ

(
J + − J −

)
r2 dt dσ+ . . .

r → 0: Rindler horizon
κ: surface gravity
J +(t, σ) + J −(t, σ): metric transversal to horizon
. . . : terms of higher order in r

I assumption 1: impose boundary conditions on (stretched) horizon,
not at infinity

I assumption 2: surface gravity state-independent, δκ = 0
I assumption 3: other metric functions state-dependent, δJ ± 6= 0
I simplifying assumption: constant surface gravity ⇒ “holographic

Ward identities” imply time-independence of state-dependent fct’s

J̇ ± = 0
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Black holes can be deformed into black flowers Afshar et al. 16

Horizon can get excited by area preserving shear-deformations
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Near horizon Chern–Simons connection

I same boundary conditions in Chern–Simons language:

a =
(
J (σ) dσ − κ dt

)
L0 A = b−1

(
d+a

)
b

I boundary condition preserving gauge trafos δεa = dε+ [a, ε]:

δεJ = η′ ε = η L0 + . . .

I canonical boundary charges in general:

δQ[ε] = − k

2π

∮
dσTr

(
ε δaσ

)
I canonical boundary charges for near horizon boundary conditions:

Q[η] = − k

4π

∮
dσ ηJ

I like Brown–Henneaux: 2 towers of conserved boundary charges J ±
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Near horizon symmetries

I near horizon symmetries = all boundary condition preserving trafos
modulo trivial gauge trafos

I near horizon symmetries generated by canonical boundary charges

δη1Q[η2] = {Q[η1], Q[η2]} = − k

4π

∮
dσ η2η

′
1

I introduce Fourier modes

Jn =
1

2π

∮
dσJ einσ

I find two affine u(1) current algebras as near horizon symmetries

[Jn, Jm] =
2

k
n δn+m, 0

replaced Poisson brackets by commutators as usual, i{ , } → [ , ]; note: algebra isomorphic to Heisenberg algebras

I simpler than Brown–Henneaux, who found Virasoros
the Brown–Henneaux Virasoros are recovered unambiguously through a twisted Sugawara-construction

I near-horizon (Cardy-like) entropy formula: S = 2π
(
J+

0 + J−0
)
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Unique features of near horizon boundary conditions

1. All states allowed by bc’s have same temperature

By contrast: asymptotically AdS or flat space bc’s allow for black
hole states at different masses and hence different temperatures

2. All states allowed by bc’s are regular
(in particular, they have no conical singularities at the horizon in the Euclidean

formulation)

3. There is a non-trivial reducibility parameter (= Killing vector)
4. Technical feature: in Chern–Simons formulation of 3d gravity simple

expressions in diagonal gauge

A± = b∓1
(

d+a±
)
b±1

a± = L0

(
J ± dσ − κ dt

)
b = exp

[(
L+ − L−

)
r/2
]

near horizon metric recovered from

gµν =
`2

2
Tr
(
(A+

µ −A−µ )(A+
ν −A−ν )

)
5. Leads to soft Heisenberg hair (see next slide!)
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Soft Heisenberg hair

I Black flower excitations = hair of black holes
Algebraically, excitations from descendants

|black flower〉 ∼
∏
n±i >0

J+

−n+
i

J−−n−i
|black hole〉

I What is energy of such excitations?
I Near horizon Hamiltonian = boundary charge associated with unit

time-translations
H = Q[∂t] = κ

(
J+

0 + J−0
)

commutes with all generators J±n
I H-eigenvalue of black flower = H-eigenvalue of black hole
I Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of
Hawking, Perry and Strominger ’16

Call it “soft Heisenberg hair”
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Near horizon boundary action

I recall general boundary action

ICS[Φ, X, Y ] = − k

4π

∫
∂M

dt dσ
(

1
2 Φ̇Φ′ − 2eΦX ′Ẏ

)
+ I∂M

I near horizon boundary conditions imply

Φ′ = J X ′ = 0

I scalar field Φ has generalized periodicity property

Φ(t, σ + 2π) = Φ(t, σ) + 2π J0

I near horizon boundary action simplifies

ICS[Φ] = − k

4π

∫
∂M

dt dσ 1
2 Φ̇Φ′ + I∂M

I still need to discuss I∂M, since it encodes the boundary Hamiltonian!

Daniel Grumiller — Near horizon dynamics of three dimensional black holes Near horizon Hamiltonian 18/33



Near horizon boundary action

I recall general boundary action

ICS[Φ, X, Y ] = − k

4π

∫
∂M

dt dσ
(

1
2 Φ̇Φ′ − 2eΦX ′Ẏ
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Simplest choice of boundary term

I well-defined variational principle if

δI∂M =
k

2π

∫
∂M

dt dσTr
(
at δaσ

)

I defining at = −ζ(t, σ)L0 and using near horizon boundary conditions
for aσ yields

δI∂M =
k

2π

∫
∂M

dtdσ ζ δJ

I integrability of boundary action requires

ζ(J) =
δH
δJ

where H is the boundary Hamiltonian density
I simplest choice (near horizon boundary conditions for at):

δζ = 0

make this choice to obtain near horizon Hamiltonian!
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Near horizon Hamiltonian

I solving integrability condition

ζ(J) =
δH
δJ

for H yields boundary Hamiltonian density

HNH = ζ J = ζ Φ′

I this was the main result announced in the beginning
I full boundary action given by

INH[Φ] = − k

2π

∫
dt dσ

(1

2
Φ̇Φ′ + ζΦ′

)
⇒ momentum given by spatial derivative, Π ∼ Φ′!

I near horizon Hamiltonian given by zero mode generator

HNH =
k

2π

∮
dσHNH =

k

2
ζ J0

recovers result expected from near horizon symmetry analysis
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Mode decomposition

I near horizon equations of motion

Φ̇′ = 0

solved by

Φ(t, σ)
∣∣
EOM

= Φ0(t) + J0 σ +
∑
n 6=0

Jn
in
einσ

I off-shell similar mode-decomposition

Φ(t, σ) = Φ0(t) + J0(t)σ +
∑
n6=0

Jn(t)

in
einσ

due to generalized periodicty property of Φ
I time-independence of holonomy requires J̇0 = 0
I off-shell mode-decomposition in near horizon boundary action:

INH[Φ0, Jn] =
k

2

∫
dt
(
− 1

2
Φ̇0J0 +

∑
n>0

i

n
J̇nJ−n − ζJ0

)
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Φ(t, σ) = Φ0(t) + J0(t)σ +
∑
n6=0

Jn(t)

in
einσ

due to generalized periodicty property of Φ

I time-independence of holonomy requires J̇0 = 0
I off-shell mode-decomposition in near horizon boundary action:

INH[Φ0, Jn] =
k

2

∫
dt
(
− 1

2
Φ̇0J0 +

∑
n>0

i

n
J̇nJ−n − ζJ0

)
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Floreanini–Jackiw symplectic structure

reminder:

INH[Φ0, Jn] =
k

2

∫
dt
(
− 1

2
Φ̇0J0 +

∑
n>0

i

n
J̇nJ−n − ζJ0

)
I rewrite near horizon boundary action in canonical form

INH[Φ0, Jn] =

∫
dt
(

Φ̇0Π0 +
∑
n>0

J̇nΠn −HNH

)

I yields relations for momenta (see e.g. Faddeev–Jackiw)

Π0 = −k
4
J0 Πn =

ik

2n
J−n

I canonical Poisson brackets {Φ0, Π0} = 1, {Jn, Πm} = δn,m recover
precisely near horizon symmetry algebra

i{Jn, Jm} =
2

k
n δn+m, 0

plus an extra relation

i{J0, Φ0} =
4i

k
I Hamiltonian HNH ∼ J0 commutes with all canonical variables ⇒

expected softness property recovered!
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Other choices for boundary action

I would like to lift soft hair degeneracy
I reason 1: because it allows to recover Brown–Henneaux story
I reason 2: because lifting soft hair degeneracy may help to address the

fantasy that soft hair excitations could correspond to black hole
microstates (at least in semi-classical limit and far away from
extremality)

I reason 3: because we can and it is fun

I idea: generalize near horizon boundary conditions and then take
suitable limit approaching them again

I achieve this by making “chemical potentials” state-dependent

ζ = ζ(J )

I not unqiue how to deform; infinitely many possibilities

I make particular choice to maintain certain scaling symmetries

I start by recovering Brown–Henneaux boundary conditions and the
Schwarzian action
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Recovering Brown–Henneaux and the Schwarzian action

I choose (with δµ = 0)
ζ = µ′ − J µ

I boundary term still integrable

IBH[Φ] =
k

4π

∫
dtdσ µ

(1

2
J 2 + J ′

)
=

k

2π

∫
dt dσ µL

with

L =
1

4
J 2 +

1

2
J ′

I boundary action analogous, but Hamiltonian density changes

HBH = −kµ
8π

(
(Φ′)2 + 2Φ′′

)
I expressing action instead in terms of X ′ = e−Φ yields

IBH[X] =
k

4π

∫
dt dσ

(
Ẋ ′′

X ′
− 3

2

X ′′Ẋ ′

X ′ 2
− µ{X, σ}Sch

)
= geometric action of Virasoro group on coadjoint orbit
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I boundary action analogous, but Hamiltonian density changes

HBH = −kµ
8π

(
(Φ′)2 + 2Φ′′
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no longer have soft hair, since HBH is not a boundary term and the
associated Hamiltonian does not commute with all generators of the
asymptotic symmetries!
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KdV integrable hierarchy

hierarchy of Hamiltonians:
I near horizon boundary conditions: H0 ∼

∮
dσJ

I Brown–Henneaux: H1 ∼
∮

dσJ 2

I KdV generalization:

HN ∼
∮

dσ RN+1(J )

where RN+1 is a Gelfand–Dikii differential polynomial:

R′N+1 = N+1
2N+1 DRN D := J ′ + 2J ∂σ + 1

2 ∂
3
σ

I for N = 2 field equations are KdV equation

J̇ = 2JJ ′ + 1
3 J
′′′

I for general N Hamiltonian density reads

HN ∼ 1
N+1 J

N+1 +

N−1∑
i=1

hi, NJN−i−1(∂iσJ )2 +Hnl
N J = Φ′

non-linear term in derivatives Hnl
N exists only for N ≥ 5; the hi, N are computable rational coefficients
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Scaling properties

I for N > 1 field equations have anisotropic scale invariance

t→ λ2N−1 t σ → λσ Φ→ λ−1Φ

action not invariant

I for N ≤ 1 field equations and action invariant under

t→ λN t σ → λσ Φ→ Φ

I we are interested in taking the limit N → 0+

I analytically continue N ∈ [0, 1], keeping scale invariance of action

I consider continuous family of boundary Hamiltonians (ε ∈ [0, 1])

Hε =
k

4π

ζε
ε(1 + ε)

∮
dσJ 1+ε

I note that we rescaled by 1/ε to have non-trivial limit ε→ 0+!
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KdV scaling limit for near horizon Hamiltonian

I take now the limit ε→ 0+

Hlog := lim
ε→0+

Hε =
kζε
4π

∮
dσJ lnJ

I limiting boundary action reads

Ilog[Φ] = − k

4π

∫
dtdσ

(1

2
Φ̇Φ′ + ζε Φ′ ln

(
Φ′
))

I field equations

Φ̇′ = −ζε
Φ′′

Φ′

yield simple solution for modes in limit of large J0

I in that limit boundary action reads

Ilog[Φ0, Jn, Πn] =

∫
dt
(

Φ̇0Π0 +
∑
n>0

J̇nΠn −
ikζε
4Π0

∑
n>0

nΠnJn

)
I achieved goal: Hamiltonian no longer commutes with everything!
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yield simple solution for modes in limit of large J0

I in that limit boundary action reads

Ilog[Φ0, Jn, Πn] =

∫
dt
(

Φ̇0Π0 +
∑
n>0

J̇nΠn −
ikζε
4Π0

∑
n>0

nΠnJn

)

I achieved goal: Hamiltonian no longer commutes with everything!
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Descendants are no longer soft

I replace again i{ , } → [ , ]

I consider descendants
J−n|0〉

of highest weight vacuum Jn|0〉 = 0 for all n ≥ 0

I calculate energy of such excitations

HlogJ−n|0〉 = [Hlog, J−n]|0〉 =
ζε
J0
nJ−n|0〉

Energy eigenvalues linear in mode numer n
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Relations to fluff proposal? (Afshar, Grumiller, Sheikh-Jabbari, Yavartanoo ’17)

I conjectured semi-classical set of BTZ microstates

|BTZ micro({n±i })〉 =
∏

J+

−n+
i

J−−n−i
|0〉

labelled by positive integers {n±i } subject to spectral constraints∑
n±i = c∆± ∆± =

1

2

(
`MBTZ ± JBTZ

)
=

c

24
(J±0 )2

I required input for fluff proposal:
I excitations fall into u(1) current algebra representations
I zero mode charge J0 has canonically conjugate Φ0

I soft hair degeneracy lifted to energies linear in mode number n

all of the above fulfilled!
I missing piece of data:

ζ±ε =
J±0
c

Fluff proposal intriguing, but not (yet) derived from first principles

Daniel Grumiller — Near horizon dynamics of three dimensional black holes Conclusions 31/33



Relations to fluff proposal? (Afshar, Grumiller, Sheikh-Jabbari, Yavartanoo ’17)

I conjectured semi-classical set of BTZ microstates

|BTZ micro({n±i })〉 =
∏

J+

−n+
i

J−−n−i
|0〉

labelled by positive integers {n±i } subject to spectral constraints∑
n±i = c∆± ∆± =

1

2

(
`MBTZ ± JBTZ

)
=

c

24
(J±0 )2

I required input for fluff proposal:
I excitations fall into u(1) current algebra representations
I zero mode charge J0 has canonically conjugate Φ0

I soft hair degeneracy lifted to energies linear in mode number n

all of the above fulfilled!

I missing piece of data:

ζ±ε =
J±0
c

Fluff proposal intriguing, but not (yet) derived from first principles

Daniel Grumiller — Near horizon dynamics of three dimensional black holes Conclusions 31/33



Relations to fluff proposal? (Afshar, Grumiller, Sheikh-Jabbari, Yavartanoo ’17)

I conjectured semi-classical set of BTZ microstates

|BTZ micro({n±i })〉 =
∏

J+

−n+
i

J−−n−i
|0〉

labelled by positive integers {n±i } subject to spectral constraints∑
n±i = c∆± ∆± =

1

2

(
`MBTZ ± JBTZ

)
=

c

24
(J±0 )2

I required input for fluff proposal:
I excitations fall into u(1) current algebra representations
I zero mode charge J0 has canonically conjugate Φ0

I soft hair degeneracy lifted to energies linear in mode number n

all of the above fulfilled!
I missing piece of data:

ζ±ε =
J±0
c

Fluff proposal intriguing, but not (yet) derived from first principles

Daniel Grumiller — Near horizon dynamics of three dimensional black holes Conclusions 31/33



Relations to fluff proposal? (Afshar, Grumiller, Sheikh-Jabbari, Yavartanoo ’17)

I conjectured semi-classical set of BTZ microstates

|BTZ micro({n±i })〉 =
∏

J+

−n+
i

J−−n−i
|0〉

labelled by positive integers {n±i } subject to spectral constraints∑
n±i = c∆± ∆± =

1

2

(
`MBTZ ± JBTZ

)
=

c

24
(J±0 )2

I required input for fluff proposal:
I excitations fall into u(1) current algebra representations
I zero mode charge J0 has canonically conjugate Φ0

I soft hair degeneracy lifted to energies linear in mode number n

all of the above fulfilled!
I missing piece of data:

ζ±ε =
J±0
c

Fluff proposal intriguing, but not (yet) derived from first principles

Daniel Grumiller — Near horizon dynamics of three dimensional black holes Conclusions 31/33



Relations to ultrarelativistic physics?
Carrollian limit

I Floreanini–Jackiw action
.

has parameter µ giving the propagation speed of the chiral boson

I near horizon boundary action yields µ = 0
I this is the Carrollian limit (compare with Donnay, Marteau and Penna)

I other consideration: start with bosonic string theory

Xµ
±(t± σ) =

xµ

2
+
`2s
2
pµ±(t± σ) +

`s√
2

∑
n 6=0

α±−n
in

ein(t±σ)

and take naive ultrarelativtistic limit t→ εt, σ → σ, ε→ 0
I result

Xµ
±(σ) =

xµ

2
± `2s

2
pµ±σ +

`s√
2

∑
n6=0

α±−n
in

e±inσ

equivalent to our on-shell mode expansion upon identifying

xµ = 2Φ0 `2sp
µ
+ = 2J0 `sα

+
−n =

√
2 Jn

− sector comparison works analogously

Confirms suspicion that nearly tensionless strings key
in near horizon description of generic black holes
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Thanks for your attention!
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