Near horizon dynamics of three dimensional black holes

Daniel Grumiller
Institute for Theoretical Physics
TU Wien
Seminar talk at ICTS, Bangalore, August, 2019

Daniel Grumiller - Near horizon dynamics of three dimensional black holes

Outline

Overture

Hamiltonian reduction

Near horizon boundary conditions

Near horizon Hamiltonian

KdV deformation

Conclusions

Outline

Overture

Hamiltonian reduction

Near horizon boundary conditions

Near horizon Hamiltonian

KdV deformation

Conclusions

Main message

- Near horizon boundary action for 3-dimensional black holes

$$
S_{\mathrm{NH}}\left[\Phi^{+}, \Phi^{-}\right]=\int \mathrm{d} t \mathrm{~d} \sigma\left(\Pi^{+} \dot{\Phi}^{+}+\Pi^{-} \dot{\Phi}^{-}-\mathcal{H}_{\mathrm{NH}}\left(\Phi^{+}, \Phi^{-}\right)\right)
$$

Main message

- Near horizon boundary action for 3-dimensional black holes

$$
S_{\mathrm{NH}}\left[\Phi^{+}, \Phi^{-}\right]=\int \mathrm{d} t \mathrm{~d} \sigma\left(\Pi^{+} \dot{\Phi}^{+}+\Pi^{-} \dot{\Phi}^{-}-\mathcal{H}_{\mathrm{NH}}\left(\Phi^{+}, \Phi^{-}\right)\right)
$$

- Scalar fields $\Phi^{ \pm}$denote left/right movers along the horizon

Main message

- Near horizon boundary action for 3-dimensional black holes

$$
S_{\mathrm{NH}}\left[\Phi^{+}, \Phi^{-}\right]=\int \mathrm{d} t \mathrm{~d} \sigma\left(\Pi^{+} \dot{\Phi}^{+}+\Pi^{-} \dot{\Phi}^{-}-\mathcal{H}_{\mathrm{NH}}\left(\Phi^{+}, \Phi^{-}\right)\right)
$$

- Scalar fields $\Phi^{ \pm}$denote left/right movers along the horizon to reduce clutter: drop \pm decorations in rest of talk

Main message

- Near horizon boundary action for 3-dimensional black holes

$$
S_{\mathrm{NH}}\left[\Phi^{+}, \Phi^{-}\right]=\int \mathrm{d} t \mathrm{~d} \sigma\left(\Pi^{+} \dot{\Phi}^{+}+\Pi^{-} \dot{\Phi}^{-}-\mathcal{H}_{\mathrm{NH}}\left(\Phi^{+}, \Phi^{-}\right)\right)
$$

- Scalar fields $\Phi^{ \pm}$denote left/right movers along the horizon
- Scalar fields are self-dual (Floreanini-Jackiw-like)

$$
\Pi \sim \Phi^{\prime}
$$

Main message

- Near horizon boundary action for 3-dimensional black holes

$$
S_{\mathrm{NH}}\left[\Phi^{+}, \Phi^{-}\right]=\int \mathrm{d} t \mathrm{~d} \sigma\left(\Pi^{+} \dot{\Phi}^{+}+\Pi^{-} \dot{\Phi}^{-}-\mathcal{H}_{\mathrm{NH}}\left(\Phi^{+}, \Phi^{-}\right)\right)
$$

- Scalar fields $\Phi^{ \pm}$denote left/right movers along the horizon
- Scalar fields are self-dual (Floreanini-Jackiw-like)

$$
\Pi \sim \Phi^{\prime}
$$

- Near horizon Hamilton density is total derivative

$$
\mathcal{H}_{\mathrm{NH}}(\Phi) \sim \zeta \Phi^{\prime}
$$

Manifestation of "softness" of near horizon excitations

Main message

- Near horizon boundary action for 3-dimensional black holes

$$
S_{\mathrm{NH}}\left[\Phi^{+}, \Phi^{-}\right]=\int \mathrm{d} t \mathrm{~d} \sigma\left(\Pi^{+} \dot{\Phi}^{+}+\Pi^{-} \dot{\Phi}^{-}-\mathcal{H}_{\mathrm{NH}}\left(\Phi^{+}, \Phi^{-}\right)\right)
$$

- Scalar fields $\Phi^{ \pm}$denote left/right movers along the horizon
- Scalar fields are self-dual (Floreanini-Jackiw-like)

$$
\Pi \sim \Phi^{\prime}
$$

- Near horizon Hamilton density is total derivative

$$
\mathcal{H}_{\mathrm{NH}}(\Phi) \sim \zeta \Phi^{\prime}
$$

Manifestation of "softness" of near horizon excitations

Purpose of talk: explain and derive results summarized above

Outline

Overture

Hamiltonian reduction

Near horizon boundary conditions

Near horizon Hamiltonian

KdV deformation

Conclusions

Einstein gravity in three dimensions as Chern-Simons theory
Einstein gravity in three dimensions useful toy model:

$$
I_{\mathrm{EH} 3}[g]=\frac{1}{16 \pi G} \int_{\mathcal{M}} \mathrm{d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)+\hat{I}_{\partial \mathcal{M}}
$$

- no local physical degrees of freedom \Rightarrow simple!

Einstein gravity in three dimensions as Chern-Simons theory
Einstein gravity in three dimensions useful toy model:

$$
I_{\mathrm{EH} 3}[g]=\frac{1}{16 \pi G} \int_{\mathcal{M}} \mathrm{d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)+\hat{I}_{\partial \mathcal{M}}
$$

- no local physical degrees of freedom \Rightarrow simple!
- rotating (BTZ) black hole solutions analogous to Kerr

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{\ell^{2} r^{2}} \mathrm{~d} t^{2}+\frac{\ell^{2} r^{2} \mathrm{~d} r^{2}}{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

Einstein gravity in three dimensions as Chern-Simons theory

Einstein gravity in three dimensions useful toy model:

$$
I_{\text {ЕНз }}[g]=\frac{1}{16 \pi G} \int_{\mathcal{M}} \mathrm{d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)+\hat{I}_{\partial \mathcal{M}}
$$

- no local physical degrees of freedom \Rightarrow simple!
- rotating (BTZ) black hole solutions analogous to Kerr

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{\ell^{2} r^{2}} \mathrm{~d} t^{2}+\frac{\ell^{2} r^{2} \mathrm{~d} r^{2}}{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- Brown-Henneaux asymptotic symmetries: 2 Virasoros $\left(\mathrm{AdS}_{3} / \mathrm{CFT}_{2}\right)$

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \quad c=\frac{3 \ell}{2 G}
$$

Einstein gravity in three dimensions as Chern-Simons theory

Einstein gravity in three dimensions useful toy model:

$$
I_{\mathrm{EH} 3}[g]=\frac{1}{16 \pi G} \int_{\mathcal{M}} \mathrm{d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)+\hat{I}_{\partial \mathcal{M}}
$$

- no local physical degrees of freedom \Rightarrow simple!
- rotating (BTZ) black hole solutions analogous to Kerr

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{\ell^{2} r^{2}} \mathrm{~d} t^{2}+\frac{\ell^{2} r^{2} \mathrm{~d} r^{2}}{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- Brown-Henneaux asymptotic symmetries: 2 Virasoros $\left(\mathrm{AdS}_{3} / \mathrm{CFT}_{2}\right)$

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \quad c=\frac{3 \ell}{2 G}=6 k
$$

- Gauge theoretic formulation as Chern-Simons theory [$k=\ell /(4 G)$]

$$
I_{\mathrm{CS}}[A]=\frac{k}{4 \pi} \int_{\mathcal{M}} \operatorname{Tr}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right)+I_{\partial \mathcal{M}}
$$

$S O(2,2)$ connection A usually split into two $\mathrm{SL}(2, \mathbb{R})$ connections; drop all \pm decorations \& work with single sector

Hamiltonian analysis of Chern-Simons theory

- Hamiltonian action of Chern-Simons theory on cylinder adapted coordinates: r : radius, $\sigma \sim \sigma+2 \pi$: angle, t : time

$$
I_{\mathrm{CS}}[A]=\frac{k}{4 \pi} \int_{\mathcal{M}} \operatorname{Tr}\left(A_{r} \dot{A}_{\sigma}-A_{\sigma} \dot{A}_{r}+2 A_{t} F_{\sigma r}\right)+I_{\partial \mathcal{M}}
$$

Hamiltonian analysis of Chern-Simons theory

- Hamiltonian action of Chern-Simons theory on cylinder adapted coordinates: r : radius, $\sigma \sim \sigma+2 \pi$: angle, t : time

$$
I_{\mathrm{CS}}[A]=\frac{k}{4 \pi} \int_{\mathcal{M}} \operatorname{Tr}\left(A_{r} \dot{A}_{\sigma}-A_{\sigma} \dot{A}_{r}+2 A_{t} F_{\sigma r}\right)+I_{\partial \mathcal{M}}
$$

- constraint $F_{\sigma r}=0$ locally solved by

$$
A_{i}=G^{-1} \partial_{i} G \quad G \in \mathrm{SL}(2, \mathbb{R})
$$

Hamiltonian analysis of Chern-Simons theory

- Hamiltonian action of Chern-Simons theory on cylinder adapted coordinates: r : radius, $\sigma \sim \sigma+2 \pi$: angle, t : time

$$
I_{\mathrm{CS}}[A]=\frac{k}{4 \pi} \int_{\mathcal{M}} \operatorname{Tr}\left(A_{r} \dot{A}_{\sigma}-A_{\sigma} \dot{A}_{r}+2 A_{t} F_{\sigma r}\right)+I_{\partial \mathcal{M}}
$$

- constraint $F_{\sigma r}=0$ locally solved by

$$
A_{i}=G^{-1} \partial_{i} G \quad G \in \operatorname{SL}(2, \mathbb{R})
$$

- gauge $\partial_{\sigma} A_{r}=A_{r}^{\prime}=0$ implies $G=g(t, \sigma) b(t, r)$

$$
A_{\sigma}=b^{-1} a_{\sigma} b \quad a_{\sigma}=g^{-1} g^{\prime} \quad A_{r}=b^{-1} \partial_{r} b
$$

Hamiltonian analysis of Chern-Simons theory

- Hamiltonian action of Chern-Simons theory on cylinder adapted coordinates: r : radius, $\sigma \sim \sigma+2 \pi$: angle, t : time

$$
I_{\mathrm{CS}}[A]=\frac{k}{4 \pi} \int_{\mathcal{M}} \operatorname{Tr}\left(A_{r} \dot{A}_{\sigma}-A_{\sigma} \dot{A}_{r}+2 A_{t} F_{\sigma r}\right)+I_{\partial \mathcal{M}}
$$

- constraint $F_{\sigma r}=0$ locally solved by

$$
A_{i}=G^{-1} \partial_{i} G \quad G \in \mathrm{SL}(2, \mathbb{R})
$$

- gauge $\partial_{\sigma} A_{r}=A_{r}^{\prime}=0$ implies $G=g(t, \sigma) b(t, r)$

$$
A_{\sigma}=b^{-1} a_{\sigma} b \quad a_{\sigma}=g^{-1} g^{\prime} \quad A_{r}=b^{-1} \partial_{r} b
$$

- for formulating boundary conditions related convenient Ansatz:

$$
A(t, \sigma, r)=b^{-1}(r)(\mathrm{d}+a(t, \sigma)) b(r) \quad a=a_{t} \mathrm{~d} t+a_{\sigma} \mathrm{d} \sigma
$$

with vanishing variation $\delta b=0$ and allowed variations $\delta a \neq 0$

Holonomies and boundary action

- locally Chern-Simons is trivial, but globally holonomies can exist

Holonomies and boundary action

- locally Chern-Simons is trivial, but globally holonomies can exist - encode holonomies in (non-)periodicity properties of group element g

$$
g(t, \sigma+2 \pi)=h g(t, \sigma) \quad h \in \mathrm{SL}(2, \mathbb{R}) \quad \operatorname{Tr} h=\operatorname{Tr}\left(\mathcal{P} \exp \oint a_{\sigma} \mathrm{d} \sigma\right)
$$

assume for simplicity time-independence of h

Holonomies and boundary action

- locally Chern-Simons is trivial, but globally holonomies can exist
- encode holonomies in (non-)periodicity properties of group element g

$$
g(t, \sigma+2 \pi)=h g(t, \sigma) \quad h \in \mathrm{SL}(2, \mathbb{R}) \quad \operatorname{Tr} h=\operatorname{Tr}\left(\mathcal{P} \exp \oint a_{\sigma} \mathrm{d} \sigma\right)
$$

assume for simplicity time-independence of h

- Hamiltonian action decomposes into three terms

$$
I_{\mathrm{CS}}[A]=-\frac{k}{4 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma \operatorname{Tr}\left(g^{\prime} g^{-1} \dot{g} g^{-1}\right)-\frac{k}{12 \pi} \int_{\mathcal{M}} \operatorname{Tr}\left(G^{-1} \mathrm{~d} G\right)^{3}+I_{\partial \mathcal{M}}
$$

Holonomies and boundary action

- locally Chern-Simons is trivial, but globally holonomies can exist
- encode holonomies in (non-)periodicity properties of group element g

$$
g(t, \sigma+2 \pi)=h g(t, \sigma) \quad h \in \mathrm{SL}(2, \mathbb{R}) \quad \operatorname{Tr} h=\operatorname{Tr}\left(\mathcal{P} \exp \oint a_{\sigma} \mathrm{d} \sigma\right)
$$

assume for simplicity time-independence of h

- Hamiltonian action decomposes into three terms

$$
I_{\mathrm{CS}}[A]=-\frac{k}{4 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma \operatorname{Tr}\left(g^{\prime} g^{-1} \dot{g} g^{-1}\right)-\frac{k}{12 \pi} \int_{\mathcal{M}} \operatorname{Tr}\left(G^{-1} \mathrm{~d} G\right)^{3}+I_{\partial \mathcal{M}}
$$

- Gauss decomposition $G=e^{X L_{+}} e^{\Phi L_{0}} e^{Y L_{-}}$yields boundary action

$$
I_{\mathrm{CS}}[\Phi, X, Y]=-\frac{k}{4 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma\left(\frac{1}{2} \dot{\Phi} \Phi^{\prime}-2 e^{\Phi} X^{\prime} \dot{Y}\right)+I_{\partial \mathcal{M}}
$$

used standard basis for $\operatorname{SL}(2, \mathbb{R}):\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}$ for $n, m=0, \pm 1$
also used Polyakov-Wiegmann identity to show b-independence of action and chose $b=1$ at $\partial \mathcal{M}$

Outline

Overture

Hamiltonian reduction

Near horizon boundary conditions

Near horizon Hamiltonian

KdV deformation

Conclusions

Near horizon boundary conditions (metric formulation)

 so far have not imposed any boundary conditionsNear horizon boundary conditions (metric formulation)
so far have not imposed any boundary conditions

- consider near horizon expansion

```
d}\mp@subsup{s}{}{2}=-\mp@subsup{\kappa}{}{2}\mp@subsup{r}{}{2}\textrm{d}\mp@subsup{t}{}{2}+\textrm{d}\mp@subsup{r}{}{2}+\frac{\mp@subsup{\ell}{}{2}}{4}(\mp@subsup{\mathcal{J}}{}{+}+\mp@subsup{\mathcal{J}}{}{-}\mp@subsup{)}{}{2}\textrm{d}\mp@subsup{\sigma}{}{2}+\kappa(\mp@subsup{\mathcal{J}}{}{+}-\mp@subsup{\mathcal{J}}{}{-})\mp@subsup{r}{}{2}\textrm{d}t\textrm{d}\sigma+
    r->0:Rindler horizon
    \kappa: surface gravity
    \mp@subsup{\mathcal{J}}{}{+}}(t,\sigma)+\mp@subsup{\mathcal{J}}{}{-}(t,\sigma): metric transversal to horizo
        terms of higher order in r
```

Near horizon boundary conditions (metric formulation)
so far have not imposed any boundary conditions

- consider near horizon expansion

$$
\mathrm{d} s^{2}=-\kappa^{2} r^{2} \mathrm{~d} t^{2}+\mathrm{d} r^{2}+\frac{\ell^{2}}{4}\left(\mathcal{J}^{+}+\mathcal{J}^{-}\right)^{2} \mathrm{~d} \sigma^{2}+\kappa\left(\mathcal{J}^{+}-\mathcal{J}^{-}\right) r^{2} \mathrm{~d} t \mathrm{~d} \sigma+.
$$

$r \rightarrow 0$: Rindler horizon
κ : surface gravity
$\mathcal{J}^{+}(t, \sigma)+\mathcal{J}^{-}(t, \sigma)$: metric transversal to horizon terms of higher order in r

- assumption 1: impose boundary conditions on (stretched) horizon, not at infinity

Near horizon boundary conditions (metric formulation)
so far have not imposed any boundary conditions

- consider near horizon expansion
$\mathrm{d} s^{2}=-\kappa^{2} r^{2} \mathrm{~d} t^{2}+\mathrm{d} r^{2}+\frac{\ell^{2}}{4}\left(\mathcal{J}^{+}+\mathcal{J}^{-}\right)^{2} \mathrm{~d} \sigma^{2}+\kappa\left(\mathcal{J}^{+}-\mathcal{J}^{-}\right) r^{2} \mathrm{~d} t \mathrm{~d} \sigma+\ldots$
$r \rightarrow 0$: Rindler horizon
κ : surface gravity
$\mathcal{J}^{+}(t, \sigma)+\mathcal{J}^{-}(t, \sigma)$: metric transversal to horizon
terms of higher order in r
- assumption 1: impose boundary conditions on (stretched) horizon, not at infinity
- assumption 2: surface gravity state-independent, $\delta \kappa=0$

Near horizon boundary conditions (metric formulation)
so far have not imposed any boundary conditions

- consider near horizon expansion
$\mathrm{d} s^{2}=-\kappa^{2} r^{2} \mathrm{~d} t^{2}+\mathrm{d} r^{2}+\frac{\ell^{2}}{4}\left(\mathcal{J}^{+}+\mathcal{J}^{-}\right)^{2} \mathrm{~d} \sigma^{2}+\kappa\left(\mathcal{J}^{+}-\mathcal{J}^{-}\right) r^{2} \mathrm{~d} t \mathrm{~d} \sigma+$
$r \rightarrow 0$: Rindler horizon
κ : surface gravity
$\mathcal{J}^{+}(t, \sigma)+\mathcal{J}^{-}(t, \sigma)$: metric transversal to horizon terms of higher order in r
- assumption 1: impose boundary conditions on (stretched) horizon, not at infinity
- assumption 2: surface gravity state-independent, $\delta \kappa=0$
- assumption 3: other metric functions state-dependent, $\delta \mathcal{J}^{ \pm} \neq 0$

Near horizon boundary conditions (metric formulation)
so far have not imposed any boundary conditions

- consider near horizon expansion
$\mathrm{d} s^{2}=-\kappa^{2} r^{2} \mathrm{~d} t^{2}+\mathrm{d} r^{2}+\frac{\ell^{2}}{4}\left(\mathcal{J}^{+}+\mathcal{J}^{-}\right)^{2} \mathrm{~d} \sigma^{2}+\kappa\left(\mathcal{J}^{+}-\mathcal{J}^{-}\right) r^{2} \mathrm{~d} t \mathrm{~d} \sigma+$
$r \rightarrow 0$: Rindler horizon
κ : surface gravity
$\mathcal{J}^{+}(t, \sigma)+\mathcal{J}^{-}(t, \sigma)$: metric transversal to horizon
terms of higher order in r
- assumption 1: impose boundary conditions on (stretched) horizon, not at infinity
- assumption 2: surface gravity state-independent, $\delta \kappa=0$
- assumption 3: other metric functions state-dependent, $\delta \mathcal{J}^{ \pm} \neq 0$
- simplifying assumption: constant surface gravity \Rightarrow "holographic Ward identities" imply time-independence of state-dependent fct's

$$
\dot{\mathcal{J}}^{ \pm}=0
$$

Black holes can be deformed into black flowers Afshar et al. 16

Horizon can get excited by area preserving shear-deformations

$k=1$

$$
k=4
$$

$k=2$

$k=5$

$k=3$

$$
k=6
$$

Near horizon Chern-Simons connection

- same boundary conditions in Chern-Simons language:

$$
a=(\mathcal{J}(\sigma) \mathrm{d} \sigma-\kappa \mathrm{d} t) L_{0} \quad A=b^{-1}(\mathrm{~d}+a) b
$$

Near horizon Chern-Simons connection

- same boundary conditions in Chern-Simons language:

$$
a=(\mathcal{J}(\sigma) \mathrm{d} \sigma-\kappa \mathrm{d} t) L_{0} \quad A=b^{-1}(\mathrm{~d}+a) b
$$

- boundary condition preserving gauge trafos $\delta_{\varepsilon} a=\mathrm{d} \varepsilon+[a, \varepsilon]$:

$$
\delta_{\varepsilon} \mathcal{J}=\eta^{\prime} \quad \varepsilon=\eta L_{0}+\ldots
$$

Near horizon Chern-Simons connection

- same boundary conditions in Chern-Simons language:

$$
a=(\mathcal{J}(\sigma) \mathrm{d} \sigma-\kappa \mathrm{d} t) L_{0} \quad A=b^{-1}(\mathrm{~d}+a) b
$$

- boundary condition preserving gauge trafos $\delta_{\varepsilon} a=\mathrm{d} \varepsilon+[a, \varepsilon]$:

$$
\delta_{\varepsilon} \mathcal{J}=\eta^{\prime} \quad \varepsilon=\eta L_{0}+\ldots
$$

- canonical boundary charges in general:

$$
\delta Q[\varepsilon]=-\frac{k}{2 \pi} \oint \mathrm{~d} \sigma \operatorname{Tr}\left(\varepsilon \delta a_{\sigma}\right)
$$

Near horizon Chern-Simons connection

- same boundary conditions in Chern-Simons language:

$$
a=(\mathcal{J}(\sigma) \mathrm{d} \sigma-\kappa \mathrm{d} t) L_{0} \quad A=b^{-1}(\mathrm{~d}+a) b
$$

- boundary condition preserving gauge trafos $\delta_{\varepsilon} a=\mathrm{d} \varepsilon+[a, \varepsilon]$:

$$
\delta_{\varepsilon} \mathcal{J}=\eta^{\prime} \quad \varepsilon=\eta L_{0}+\ldots
$$

- canonical boundary charges in general:

$$
\delta Q[\varepsilon]=-\frac{k}{2 \pi} \oint \mathrm{~d} \sigma \operatorname{Tr}\left(\varepsilon \delta a_{\sigma}\right)
$$

- canonical boundary charges for near horizon boundary conditions:

$$
Q[\eta]=-\frac{k}{4 \pi} \oint \mathrm{~d} \sigma \eta \mathcal{J}
$$

Near horizon Chern-Simons connection

- same boundary conditions in Chern-Simons language:

$$
a=(\mathcal{J}(\sigma) \mathrm{d} \sigma-\kappa \mathrm{d} t) L_{0} \quad A=b^{-1}(\mathrm{~d}+a) b
$$

- boundary condition preserving gauge trafos $\delta_{\varepsilon} a=\mathrm{d} \varepsilon+[a, \varepsilon]$:

$$
\delta_{\varepsilon} \mathcal{J}=\eta^{\prime} \quad \varepsilon=\eta L_{0}+\ldots
$$

- canonical boundary charges in general:

$$
\delta Q[\varepsilon]=-\frac{k}{2 \pi} \oint \mathrm{~d} \sigma \operatorname{Tr}\left(\varepsilon \delta a_{\sigma}\right)
$$

- canonical boundary charges for near horizon boundary conditions:

$$
Q[\eta]=-\frac{k}{4 \pi} \oint \mathrm{~d} \sigma \eta \mathcal{J}
$$

- like Brown-Henneaux: 2 towers of conserved boundary charges $\mathcal{J}^{ \pm}$

Near horizon symmetries

- near horizon symmetries $=$ all boundary condition preserving trafos modulo trivial gauge trafos

Near horizon symmetries

- near horizon symmetries $=$ all boundary condition preserving trafos modulo trivial gauge trafos
- near horizon symmetries generated by canonical boundary charges

$$
\delta_{\eta_{1}} Q\left[\eta_{2}\right]=\left\{Q\left[\eta_{1}\right], Q\left[\eta_{2}\right]\right\}=-\frac{k}{4 \pi} \oint \mathrm{~d} \sigma \eta_{2} \eta_{1}^{\prime}
$$

Near horizon symmetries

- near horizon symmetries = all boundary condition preserving trafos modulo trivial gauge trafos
- near horizon symmetries generated by canonical boundary charges

$$
\delta_{\eta_{1}} Q\left[\eta_{2}\right]=\left\{Q\left[\eta_{1}\right], Q\left[\eta_{2}\right]\right\}=-\frac{k}{4 \pi} \oint \mathrm{~d} \sigma \eta_{2} \eta_{1}^{\prime}
$$

- introduce Fourier modes

$$
J_{n}=\frac{1}{2 \pi} \oint \mathrm{~d} \sigma \mathcal{J} e^{i n \sigma}
$$

Near horizon symmetries

- near horizon symmetries $=$ all boundary condition preserving trafos modulo trivial gauge trafos
- near horizon symmetries generated by canonical boundary charges

$$
\delta_{\eta_{1}} Q\left[\eta_{2}\right]=\left\{Q\left[\eta_{1}\right], Q\left[\eta_{2}\right]\right\}=-\frac{k}{4 \pi} \oint \mathrm{~d} \sigma \eta_{2} \eta_{1}^{\prime}
$$

- introduce Fourier modes

$$
J_{n}=\frac{1}{2 \pi} \oint \mathrm{~d} \sigma \mathcal{J} e^{i n \sigma}
$$

- find two affine $u(1)$ current algebras as near horizon symmetries

$$
\left[J_{n}, J_{m}\right]=\frac{2}{k} n \delta_{n+m, 0}
$$

replaced Poisson brackets by commutators as usual, $i\{,\} \rightarrow[$,]; note: algebra isomorphic to Heisenberg algebras

Near horizon symmetries

- near horizon symmetries $=$ all boundary condition preserving trafos modulo trivial gauge trafos
- near horizon symmetries generated by canonical boundary charges

$$
\delta_{\eta_{1}} Q\left[\eta_{2}\right]=\left\{Q\left[\eta_{1}\right], Q\left[\eta_{2}\right]\right\}=-\frac{k}{4 \pi} \oint \mathrm{~d} \sigma \eta_{2} \eta_{1}^{\prime}
$$

- introduce Fourier modes

$$
J_{n}=\frac{1}{2 \pi} \oint \mathrm{~d} \sigma \mathcal{J} e^{i n \sigma}
$$

- find two affine $u(1)$ current algebras as near horizon symmetries

$$
\left[J_{n}, J_{m}\right]=\frac{2}{k} n \delta_{n+m, 0}
$$

replaced Poisson brackets by commutators as usual, i\{,\} $\}$ [,]; note: algebra isomorphic to Heisenberg algebras

- simpler than Brown-Henneaux, who found Virasoros
the Brown-Henneaux Virasoros are recovered unambiguously through a twisted Sugawara-construction

Near horizon symmetries

- near horizon symmetries $=$ all boundary condition preserving trafos modulo trivial gauge trafos
- near horizon symmetries generated by canonical boundary charges

$$
\delta_{\eta_{1}} Q\left[\eta_{2}\right]=\left\{Q\left[\eta_{1}\right], Q\left[\eta_{2}\right]\right\}=-\frac{k}{4 \pi} \oint \mathrm{~d} \sigma \eta_{2} \eta_{1}^{\prime}
$$

- introduce Fourier modes

$$
J_{n}=\frac{1}{2 \pi} \oint \mathrm{~d} \sigma \mathcal{J} e^{i n \sigma}
$$

- find two affine $u(1)$ current algebras as near horizon symmetries

$$
\left[J_{n}, J_{m}\right]=\frac{2}{k} n \delta_{n+m, 0}
$$

replaced Poisson brackets by commutators as usual, $i\{,\} \rightarrow[$,]; note: algebra isomorrhic to Heisenberg algebras

- simpler than Brown-Henneaux, who found Virasoros
the Brown-Henneaux Virasoros are recovered unambiguously through a twisted Sugawara-construction
- near-horizon (Cardy-like) entropy formula: $S=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)$

Unique features of near horizon boundary conditions

1. All states allowed by bc's have same temperature

By contrast: asymptotically AdS or flat space bc's allow for black hole states at different masses and hence different temperatures

Unique features of near horizon boundary conditions

1. All states allowed by bc's have same temperature
2. All states allowed by bc's are regular
(in particular, they have no conical singularities at the horizon in the Euclidean formulation)

By contrast: for given temperature not all states in theories with asymptotically AdS or flat space bc's are free from conical singularities; usually a unique black hole state is picked

Unique features of near horizon boundary conditions

1. All states allowed by bc's have same temperature
2. All states allowed by bc's are regular
(in particular, they have no conical singularities at the horizon in the Euclidean formulation)
3. There is a non-trivial reducibility parameter (=Killing vector)

By contrast: for any other known (non-trivial) bc's there is no vector field that is Killing for all geometries allowed by bc's

Unique features of near horizon boundary conditions

1. All states allowed by bc's have same temperature
2. All states allowed by bc's are regular
(in particular, they have no conical singularities at the horizon in the Euclidean formulation)
3. There is a non-trivial reducibility parameter (=Killing vector)
4. Technical feature: in Chern-Simons formulation of 3d gravity simple expressions in diagonal gauge

$$
\begin{aligned}
A^{ \pm} & =b^{\mp 1}\left(\mathrm{~d}+a^{ \pm}\right) b^{ \pm 1} \\
a^{ \pm} & =L_{0}\left(\mathcal{J}^{ \pm} \mathrm{d} \sigma-\kappa \mathrm{d} t\right) \\
b & =\exp \left[\left(L_{+}-L_{-}\right) r / 2\right]
\end{aligned}
$$

near horizon metric recovered from

$$
g_{\mu \nu}=\frac{\ell^{2}}{2} \operatorname{Tr}\left(\left(A_{\mu}^{+}-A_{\mu}^{-}\right)\left(A_{\nu}^{+}-A_{\nu}^{-}\right)\right)
$$

Unique features of near horizon boundary conditions

1. All states allowed by bc's have same temperature
2. All states allowed by bc's are regular (in particular, they have no conical singularities at the horizon in the Euclidean formulation)
3. There is a non-trivial reducibility parameter (=Killing vector)
4. Technical feature: in Chern-Simons formulation of 3d gravity simple expressions in diagonal gauge

$$
\begin{aligned}
A^{ \pm} & =b^{\mp 1}\left(\mathrm{~d}+a^{ \pm}\right) b^{ \pm 1} \\
a^{ \pm} & =L_{0}\left(\mathcal{J}^{ \pm} \mathrm{d} \sigma-\kappa \mathrm{d} t\right) \\
b & =\exp \left[\left(L_{+}-L_{-}\right) r / 2\right]
\end{aligned}
$$

near horizon metric recovered from

$$
g_{\mu \nu}=\frac{\ell^{2}}{2} \operatorname{Tr}\left(\left(A_{\mu}^{+}-A_{\mu}^{-}\right)\left(A_{\nu}^{+}-A_{\nu}^{-}\right)\right)
$$

5. Leads to soft Heisenberg hair (see next slide!)

Soft Heisenberg hair

- Black flower excitations = hair of black holes Algebraically, excitations from descendants

$$
\left.\mid \text { black flower }\rangle \sim \prod_{n_{i}^{+}>0} J_{-n_{i}^{+}}^{+} J_{-n_{i}^{-}}^{-} \mid \text {black hole }\right\rangle
$$

Soft Heisenberg hair

- Black flower excitations = hair of black holes Algebraically, excitations from descendants

$$
\left.\mid \text { black flower }\rangle \sim \prod_{n_{i}^{ \pm}>0} J_{-n_{i}^{+}}^{+} J_{-n_{i}^{-}}^{-} \mid \text {black hole }\right\rangle
$$

- What is energy of such excitations?

Soft Heisenberg hair

- Black flower excitations = hair of black holes Algebraically, excitations from descendants

$$
\left.\mid \text { black flower }\rangle \sim \prod_{n_{i}^{ \pm}>0} J_{-n_{i}^{+}}^{+} J_{-n_{i}^{-}}^{-} \mid \text {black hole }\right\rangle
$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations*

$$
H=Q\left[\partial_{t}\right]=\kappa\left(J_{0}^{+}+J_{0}^{-}\right)
$$

commutes with all generators $J_{n}^{ \pm}$

* units defined by specifying κ

Soft Heisenberg hair

- Black flower excitations = hair of black holes

Algebraically, excitations from descendants

$$
\left.\mid \text { black flower }\rangle \sim \prod_{n_{i}^{ \pm}>0} J_{-n_{i}^{+}}^{+} J_{-n_{i}^{-}}^{-} \mid \text {black hole }\right\rangle
$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$
H=Q\left[\partial_{t}\right]=\kappa\left(J_{0}^{+}+J_{0}^{-}\right)
$$

commutes with all generators $J_{n}^{ \pm}$

- H-eigenvalue of black flower $=H$-eigenvalue of black hole

Soft Heisenberg hair

- Black flower excitations = hair of black holes

Algebraically, excitations from descendants

$$
\left.\mid \text { black flower }\rangle \sim \prod_{n_{i}^{ \pm}>0} J_{-n_{i}^{+}}^{+} J_{-n_{i}^{-}}^{-} \mid \text {black hole }\right\rangle
$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$
H=Q\left[\partial_{t}\right]=\kappa\left(J_{0}^{+}+J_{0}^{-}\right)
$$

commutes with all generators $J_{n}^{ \pm}$

- H-eigenvalue of black flower $=H$-eigenvalue of black hole
- Black flower excitations do not change energy of black hole!

Soft Heisenberg hair

- Black flower excitations = hair of black holes Algebraically, excitations from descendants

$$
\left.\mid \text { black flower }\rangle \sim \prod_{n_{i}^{ \pm}>0} J_{-n_{i}^{+}}^{+} J_{-n_{i}^{-}}^{-} \mid \text {black hole }\right\rangle
$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$
H=Q\left[\partial_{t}\right]=\kappa\left(J_{0}^{+}+J_{0}^{-}\right)
$$

commutes with all generators $J_{n}^{ \pm}$

- H-eigenvalue of black flower $=H$-eigenvalue of black hole
- Black flower excitations do not change energy of black hole!

> Black flower excitations $=$ soft hair in sense of Hawking, Perry and Strominger '16

Soft Heisenberg hair

- Black flower excitations = hair of black holes Algebraically, excitations from descendants

$$
\text { |black flower } \left.\rangle \sim \prod_{n_{i}^{ \pm}>0} J_{-n_{i}^{+}}^{+} J_{-n_{i}^{-}}^{-} \mid \text {black hole }\right\rangle
$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$
H=Q\left[\partial_{t}\right]=\kappa\left(J_{0}^{+}+J_{0}^{-}\right)
$$

commutes with all generators $J_{n}^{ \pm}$

- H-eigenvalue of black flower $=H$-eigenvalue of black hole
- Black flower excitations do not change energy of black hole!

> Black flower excitations $=$ soft hair in sense of Hawking, Perry and Strominger '16
> Call it "soft Heisenberg hair"

Outline

Overture

Hamiltonian reduction

Near horizon boundary conditions

Near horizon Hamiltonian

KdV deformation

Conclusions

Near horizon boundary action

- recall general boundary action

$$
I_{\mathrm{CS}}[\Phi, X, Y]=-\frac{k}{4 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma\left(\frac{1}{2} \dot{\Phi} \Phi^{\prime}-2 e^{\Phi} X^{\prime} \dot{Y}\right)+I_{\partial \mathcal{M}}
$$

Near horizon boundary action

- recall general boundary action

$$
I_{\mathrm{CS}}[\Phi, X, Y]=-\frac{k}{4 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma\left(\frac{1}{2} \dot{\Phi} \Phi^{\prime}-2 e^{\Phi} X^{\prime} \dot{Y}\right)+I_{\partial \mathcal{M}}
$$

- near horizon boundary conditions imply

$$
\Phi^{\prime}=\mathcal{J} \quad X^{\prime}=0
$$

Near horizon boundary action

- recall general boundary action

$$
I_{\mathrm{CS}}[\Phi, X, Y]=-\frac{k}{4 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma\left(\frac{1}{2} \dot{\Phi} \Phi^{\prime}-2 e^{\Phi} X^{\prime} \dot{Y}\right)+I_{\partial \mathcal{M}}
$$

- near horizon boundary conditions imply

$$
\Phi^{\prime}=\mathcal{J} \quad X^{\prime}=0
$$

- scalar field Φ has generalized periodicity property

$$
\Phi(t, \sigma+2 \pi)=\Phi(t, \sigma)+2 \pi J_{0}
$$

Near horizon boundary action

- recall general boundary action

$$
I_{\mathrm{CS}}[\Phi, X, Y]=-\frac{k}{4 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma\left(\frac{1}{2} \dot{\Phi} \Phi^{\prime}-2 e^{\Phi} X^{\prime} \dot{Y}\right)+I_{\partial \mathcal{M}}
$$

- near horizon boundary conditions imply

$$
\Phi^{\prime}=\mathcal{J} \quad X^{\prime}=0
$$

- scalar field Φ has generalized periodicity property

$$
\Phi(t, \sigma+2 \pi)=\Phi(t, \sigma)+2 \pi J_{0}
$$

- near horizon boundary action simplifies

$$
I_{\mathrm{CS}}[\Phi]=-\frac{k}{4 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma \frac{1}{2} \dot{\Phi} \Phi^{\prime}+I_{\partial \mathcal{M}}
$$

Near horizon boundary action

- recall general boundary action

$$
I_{\mathrm{CS}}[\Phi, X, Y]=-\frac{k}{4 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma\left(\frac{1}{2} \dot{\Phi} \Phi^{\prime}-2 e^{\Phi} X^{\prime} \dot{Y}\right)+I_{\partial \mathcal{M}}
$$

- near horizon boundary conditions imply

$$
\Phi^{\prime}=\mathcal{J} \quad X^{\prime}=0
$$

- scalar field Φ has generalized periodicity property

$$
\Phi(t, \sigma+2 \pi)=\Phi(t, \sigma)+2 \pi J_{0}
$$

- near horizon boundary action simplifies

$$
I_{\mathrm{CS}}[\Phi]=-\frac{k}{4 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma \frac{1}{2} \dot{\Phi} \Phi^{\prime}+I_{\partial \mathcal{M}}
$$

- still need to discuss $I_{\partial \mathcal{M}}$, since it encodes the boundary Hamiltonian!

Simplest choice of boundary term

- well-defined variational principle if

$$
\delta I_{\partial \mathcal{M}}=\frac{k}{2 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma \operatorname{Tr}\left(a_{t} \delta a_{\sigma}\right)
$$

Simplest choice of boundary term

- well-defined variational principle if

$$
\delta I_{\partial \mathcal{M}}=\frac{k}{2 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma \operatorname{Tr}\left(a_{t} \delta a_{\sigma}\right)
$$

- defining $a_{t}=-\zeta(t, \sigma) L_{0}$ and using near horizon boundary conditions for a_{σ} yields

$$
\delta I_{\partial \mathcal{M}}=\frac{k}{2 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma \zeta \delta J
$$

Simplest choice of boundary term

- well-defined variational principle if

$$
\delta I_{\partial \mathcal{M}}=\frac{k}{2 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma \operatorname{Tr}\left(a_{t} \delta a_{\sigma}\right)
$$

- defining $a_{t}=-\zeta(t, \sigma) L_{0}$ and using near horizon boundary conditions for a_{σ} yields

$$
\delta I_{\partial \mathcal{M}}=\frac{k}{2 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma \zeta \delta J
$$

- integrability of boundary action requires

$$
\zeta(J)=\frac{\delta \mathcal{H}}{\delta \mathcal{J}}
$$

where \mathcal{H} is the boundary Hamiltonian density

Simplest choice of boundary term

- well-defined variational principle if

$$
\delta I_{\partial \mathcal{M}}=\frac{k}{2 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma \operatorname{Tr}\left(a_{t} \delta a_{\sigma}\right)
$$

- defining $a_{t}=-\zeta(t, \sigma) L_{0}$ and using near horizon boundary conditions for a_{σ} yields

$$
\delta I_{\partial \mathcal{M}}=\frac{k}{2 \pi} \int_{\partial \mathcal{M}} \mathrm{d} t \mathrm{~d} \sigma \zeta \delta J
$$

- integrability of boundary action requires

$$
\zeta(J)=\frac{\delta \mathcal{H}}{\delta \mathcal{J}}
$$

where \mathcal{H} is the boundary Hamiltonian density

- simplest choice (near horizon boundary conditions for a_{t}):

$$
\delta \zeta=0
$$

make this choice to obtain near horizon Hamiltonian!

Near horizon Hamiltonian

- solving integrability condition

$$
\zeta(J)=\frac{\delta \mathcal{H}}{\delta \mathcal{J}}
$$

for \mathcal{H} yields boundary Hamiltonian density

$$
\mathcal{H}_{\mathrm{NH}}=\zeta \mathcal{J}=\zeta \Phi^{\prime}
$$

Near horizon Hamiltonian

- solving integrability condition

$$
\zeta(J)=\frac{\delta \mathcal{H}}{\delta \mathcal{J}}
$$

for \mathcal{H} yields boundary Hamiltonian density

$$
\mathcal{H}_{\mathrm{NH}}=\zeta \mathcal{J}=\zeta \Phi^{\prime}
$$

- this was the main result announced in the beginning

Near horizon Hamiltonian

- solving integrability condition

$$
\zeta(J)=\frac{\delta \mathcal{H}}{\delta \mathcal{J}}
$$

for \mathcal{H} yields boundary Hamiltonian density

$$
\mathcal{H}_{\mathrm{NH}}=\zeta \mathcal{J}=\zeta \Phi^{\prime}
$$

- this was the main result announced in the beginning
- full boundary action given by

$$
I_{\mathrm{NH}}[\Phi]=-\frac{k}{2 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma\left(\frac{1}{2} \dot{\Phi} \Phi^{\prime}+\zeta \Phi^{\prime}\right)
$$

\Rightarrow momentum given by spatial derivative, $\Pi \sim \Phi^{\prime}$!

Near horizon Hamiltonian

- solving integrability condition

$$
\zeta(J)=\frac{\delta \mathcal{H}}{\delta \mathcal{J}}
$$

for \mathcal{H} yields boundary Hamiltonian density

$$
\mathcal{H}_{\mathrm{NH}}=\zeta \mathcal{J}=\zeta \Phi^{\prime}
$$

- this was the main result announced in the beginning
- full boundary action given by

$$
I_{\mathrm{NH}}[\Phi]=-\frac{k}{2 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma\left(\frac{1}{2} \dot{\Phi} \Phi^{\prime}+\zeta \Phi^{\prime}\right)
$$

\Rightarrow momentum given by spatial derivative, $\Pi \sim \Phi^{\prime}$!

- near horizon Hamiltonian given by zero mode generator

$$
H_{\mathrm{NH}}=\frac{k}{2 \pi} \oint \mathrm{~d} \sigma \mathcal{H}_{\mathrm{NH}}=\frac{k}{2} \zeta J_{0}
$$

recovers result expected from near horizon symmetry analysis

Mode decomposition

- near horizon equations of motion

$$
\dot{\Phi}^{\prime}=0
$$

solved by

$$
\left.\Phi(t, \sigma)\right|_{\mathrm{EOM}}=\Phi_{0}(t)+J_{0} \sigma+\sum_{n \neq 0} \frac{J_{n}}{i n} e^{i n \sigma}
$$

Mode decomposition

- near horizon equations of motion

$$
\dot{\Phi}^{\prime}=0
$$

solved by

$$
\left.\Phi(t, \sigma)\right|_{\mathrm{EOM}}=\Phi_{0}(t)+J_{0} \sigma+\sum_{n \neq 0} \frac{J_{n}}{i n} e^{i n \sigma}
$$

- off-shell similar mode-decomposition

$$
\Phi(t, \sigma)=\Phi_{0}(t)+J_{0}(t) \sigma+\sum_{n \neq 0} \frac{J_{n}(t)}{i n} e^{i n \sigma}
$$

due to generalized periodicty property of Φ

Mode decomposition

- near horizon equations of motion

$$
\dot{\Phi}^{\prime}=0
$$

solved by

$$
\left.\Phi(t, \sigma)\right|_{\mathrm{EOM}}=\Phi_{0}(t)+J_{0} \sigma+\sum_{n \neq 0} \frac{J_{n}}{i n} e^{i n \sigma}
$$

- off-shell similar mode-decomposition

$$
\Phi(t, \sigma)=\Phi_{0}(t)+J_{0}(t) \sigma+\sum_{n \neq 0} \frac{J_{n}(t)}{i n} e^{i n \sigma}
$$

due to generalized periodicty property of Φ

- time-independence of holonomy requires $\dot{J}_{0}=0$

Mode decomposition

- near horizon equations of motion

$$
\dot{\Phi}^{\prime}=0
$$

solved by

$$
\left.\Phi(t, \sigma)\right|_{\mathrm{EOM}}=\Phi_{0}(t)+J_{0} \sigma+\sum_{n \neq 0} \frac{J_{n}}{i n} e^{i n \sigma}
$$

- off-shell similar mode-decomposition

$$
\Phi(t, \sigma)=\Phi_{0}(t)+J_{0}(t) \sigma+\sum_{n \neq 0} \frac{J_{n}(t)}{i n} e^{i n \sigma}
$$

due to generalized periodicty property of Φ

- time-independence of holonomy requires $\dot{J}_{0}=0$
- off-shell mode-decomposition in near horizon boundary action:

$$
I_{\mathrm{NH}}\left[\Phi_{0}, J_{n}\right]=\frac{k}{2} \int \mathrm{~d} t\left(-\frac{1}{2} \dot{\Phi}_{0} J_{0}+\sum_{n>0} \frac{i}{n} \dot{J}_{n} J_{-n}-\zeta J_{0}\right)
$$

Floreanini-Jackiw symplectic structure
reminder:

$$
I_{\mathrm{NH}}\left[\Phi_{0}, J_{n}\right]=\frac{k}{2} \int \mathrm{~d} t\left(-\frac{1}{2} \dot{\Phi}_{0} J_{0}+\sum_{n>0} \frac{i}{n} \dot{J}_{n} J_{-n}-\zeta J_{0}\right)
$$

- rewrite near horizon boundary action in canonical form

$$
I_{\mathrm{NH}}\left[\Phi_{0}, J_{n}\right]=\int \mathrm{d} t\left(\dot{\Phi}_{0} \Pi_{0}+\sum_{n>0} \dot{J}_{n} \Pi_{n}-H_{\mathrm{NH}}\right)
$$

Floreanini-Jackiw symplectic structure
reminder:

$$
I_{\mathrm{NH}}\left[\Phi_{0}, J_{n}\right]=\frac{k}{2} \int \mathrm{~d} t\left(-\frac{1}{2} \dot{\Phi}_{0} J_{0}+\sum_{n>0} \frac{i}{n} \dot{J}_{n} J_{-n}-\zeta J_{0}\right)
$$

- rewrite near horizon boundary action in canonical form

$$
I_{\mathrm{NH}}\left[\Phi_{0}, J_{n}\right]=\int \mathrm{d} t\left(\dot{\Phi}_{0} \Pi_{0}+\sum_{n>0} \dot{J}_{n} \Pi_{n}-H_{\mathrm{NH}}\right)
$$

- yields relations for momenta (see e.g. Faddeev-Jackiw)

$$
\Pi_{0}=-\frac{k}{4} J_{0} \quad \Pi_{n}=\frac{i k}{2 n} J_{-n}
$$

Floreanini-Jackiw symplectic structure

- rewrite near horizon boundary action in canonical form

$$
I_{\mathrm{NH}}\left[\Phi_{0}, J_{n}\right]=\int \mathrm{d} t\left(\dot{\Phi}_{0} \Pi_{0}+\sum_{n>0} \dot{J}_{n} \Pi_{n}-H_{\mathrm{NH}}\right)
$$

- yields relations for momenta (see e.g. Faddeev-Jackiw)

$$
\Pi_{0}=-\frac{k}{4} J_{0} \quad \Pi_{n}=\frac{i k}{2 n} J_{-n}
$$

- canonical Poisson brackets $\left\{\Phi_{0}, \Pi_{0}\right\}=1,\left\{J_{n}, \Pi_{m}\right\}=\delta_{n, m}$ recover precisely near horizon symmetry algebra

$$
i\left\{J_{n}, J_{m}\right\}=\frac{2}{k} n \delta_{n+m, 0}
$$

plus an extra relation

$$
i\left\{J_{0}, \Phi_{0}\right\}=\frac{4 i}{k}
$$

Floreanini-Jackiw symplectic structure

- rewrite near horizon boundary action in canonical form

$$
I_{\mathrm{NH}}\left[\Phi_{0}, J_{n}\right]=\int \mathrm{d} t\left(\dot{\Phi}_{0} \Pi_{0}+\sum_{n>0} \dot{J}_{n} \Pi_{n}-H_{\mathrm{NH}}\right)
$$

- yields relations for momenta (see e.g. Faddeev-Jackiw)

$$
\Pi_{0}=-\frac{k}{4} J_{0} \quad \Pi_{n}=\frac{i k}{2 n} J_{-n}
$$

- canonical Poisson brackets $\left\{\Phi_{0}, \Pi_{0}\right\}=1,\left\{J_{n}, \Pi_{m}\right\}=\delta_{n, m}$ recover precisely near horizon symmetry algebra

$$
i\left\{J_{n}, J_{m}\right\}=\frac{2}{k} n \delta_{n+m, 0}
$$

plus an extra relation

$$
i\left\{J_{0}, \Phi_{0}\right\}=\frac{4 i}{k}
$$

- Hamiltonian $H_{\mathrm{NH}} \sim J_{0}$ commutes with all canonical variables \Rightarrow expected softness property recovered!

Outline

Overture

Hamiltonian reduction

Near horizon boundary conditions

Near horizon Hamiltonian

KdV deformation

Conclusions

Other choices for boundary action

- would like to lift soft hair degeneracy
- reason 1: because it allows to recover Brown-Henneaux story
- reason 2: because lifting soft hair degeneracy may help to address the fantasy that soft hair excitations could correspond to black hole microstates (at least in semi-classical limit and far away from extremality)
- reason 3: because we can and it is fun

Other choices for boundary action

- would like to lift soft hair degeneracy
- reason 1: because it allows to recover Brown-Henneaux story
- reason 2: because lifting soft hair degeneracy may help to address the fantasy that soft hair excitations could correspond to black hole microstates (at least in semi-classical limit and far away from extremality)
- reason 3: because we can and it is fun
- idea: generalize near horizon boundary conditions and then take suitable limit approaching them again

Other choices for boundary action

- would like to lift soft hair degeneracy
- reason 1: because it allows to recover Brown-Henneaux story
- reason 2: because lifting soft hair degeneracy may help to address the fantasy that soft hair excitations could correspond to black hole microstates (at least in semi-classical limit and far away from extremality)
- reason 3: because we can and it is fun
- idea: generalize near horizon boundary conditions and then take suitable limit approaching them again
- achieve this by making "chemical potentials" state-dependent

$$
\zeta=\zeta(\mathcal{J})
$$

Other choices for boundary action

- would like to lift soft hair degeneracy
- reason 1: because it allows to recover Brown-Henneaux story
- reason 2: because lifting soft hair degeneracy may help to address the fantasy that soft hair excitations could correspond to black hole microstates (at least in semi-classical limit and far away from extremality)
- reason 3: because we can and it is fun
- idea: generalize near horizon boundary conditions and then take suitable limit approaching them again
- achieve this by making "chemical potentials" state-dependent

$$
\zeta=\zeta(\mathcal{J})
$$

- not unqiue how to deform; infinitely many possibilities

Other choices for boundary action

- would like to lift soft hair degeneracy
- reason 1: because it allows to recover Brown-Henneaux story
- reason 2: because lifting soft hair degeneracy may help to address the fantasy that soft hair excitations could correspond to black hole microstates (at least in semi-classical limit and far away from extremality)
- reason 3: because we can and it is fun
- idea: generalize near horizon boundary conditions and then take suitable limit approaching them again
- achieve this by making "chemical potentials" state-dependent

$$
\zeta=\zeta(\mathcal{J})
$$

- not unqiue how to deform; infinitely many possibilities
- make particular choice to maintain certain scaling symmetries

Other choices for boundary action

- would like to lift soft hair degeneracy
- reason 1: because it allows to recover Brown-Henneaux story
- reason 2: because lifting soft hair degeneracy may help to address the fantasy that soft hair excitations could correspond to black hole microstates (at least in semi-classical limit and far away from extremality)
- reason 3: because we can and it is fun
- idea: generalize near horizon boundary conditions and then take suitable limit approaching them again
- achieve this by making "chemical potentials" state-dependent

$$
\zeta=\zeta(\mathcal{J})
$$

- not unqiue how to deform; infinitely many possibilities
- make particular choice to maintain certain scaling symmetries
- start by recovering Brown-Henneaux boundary conditions and the Schwarzian action

Recovering Brown-Henneaux and the Schwarzian action

- choose (with $\delta \mu=0$)

$$
\zeta=\mu^{\prime}-\mathcal{J} \mu
$$

Recovering Brown-Henneaux and the Schwarzian action

- choose (with $\delta \mu=0$)

$$
\zeta=\mu^{\prime}-\mathcal{J} \mu
$$

- boundary term still integrable

$$
I_{\mathrm{BH}}[\Phi]=\frac{k}{4 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma \mu\left(\frac{1}{2} \mathcal{J}^{2}+\mathcal{J}^{\prime}\right)=\frac{k}{2 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma \mu \mathcal{L}
$$

with

$$
\mathcal{L}=\frac{1}{4} \mathcal{J}^{2}+\frac{1}{2} \mathcal{J}^{\prime}
$$

Recovering Brown-Henneaux and the Schwarzian action

- choose (with $\delta \mu=0$)

$$
\zeta=\mu^{\prime}-\mathcal{J} \mu
$$

- boundary term still integrable

$$
I_{\mathrm{BH}}[\Phi]=\frac{k}{4 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma \mu\left(\frac{1}{2} \mathcal{J}^{2}+\mathcal{J}^{\prime}\right)=\frac{k}{2 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma \mu \mathcal{L}
$$

with

$$
\mathcal{L}=\frac{1}{4} \mathcal{J}^{2}+\frac{1}{2} \mathcal{J}^{\prime}
$$

- boundary action analogous, but Hamiltonian density changes

$$
\mathcal{H}_{\mathrm{BH}}=-\frac{k \mu}{8 \pi}\left(\left(\Phi^{\prime}\right)^{2}+2 \Phi^{\prime \prime}\right)
$$

no longer have soft hair, since $\mathcal{H}_{\mathrm{BH}}$ is not a boundary term and the associated Hamiltonian does not commute with all generators of the asymptotic symmetries!

Recovering Brown-Henneaux and the Schwarzian action

- choose (with $\delta \mu=0$)

$$
\zeta=\mu^{\prime}-\mathcal{J} \mu
$$

- boundary term still integrable

$$
I_{\mathrm{BH}}[\Phi]=\frac{k}{4 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma \mu\left(\frac{1}{2} \mathcal{J}^{2}+\mathcal{J}^{\prime}\right)=\frac{k}{2 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma \mu \mathcal{L}
$$

with

$$
\mathcal{L}=\frac{1}{4} \mathcal{J}^{2}+\frac{1}{2} \mathcal{J}^{\prime}
$$

- boundary action analogous, but Hamiltonian density changes

$$
\mathcal{H}_{\mathrm{BH}}=-\frac{k \mu}{8 \pi}\left(\left(\Phi^{\prime}\right)^{2}+2 \Phi^{\prime \prime}\right)
$$

- expressing action instead in terms of $X^{\prime}=e^{-\Phi}$ yields

$$
I_{\mathrm{BH}}[X]=\frac{k}{4 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma\left(\frac{\dot{X}^{\prime \prime}}{X^{\prime}}-\frac{3}{2} \frac{X^{\prime \prime} \dot{X}^{\prime}}{X^{\prime 2}}-\mu\{X, \sigma\}_{\mathrm{Sch}}\right)
$$

$=$ geometric action of Virasoro group on coadjoint orbit

KdV integrable hierarchy

hierarchy of Hamiltonians:

- near horizon boundary conditions: $H_{0} \sim \oint \mathrm{~d} \sigma \mathcal{J}$

KdV integrable hierarchy

hierarchy of Hamiltonians:

- near horizon boundary conditions: $H_{0} \sim \oint \mathrm{~d} \sigma \mathcal{J}$
- Brown-Henneaux: $H_{1} \sim \oint \mathrm{~d} \sigma \mathcal{J}^{2}$

KdV integrable hierarchy
hierarchy of Hamiltonians:

- near horizon boundary conditions: $H_{0} \sim \oint \mathrm{~d} \sigma \mathcal{J}$
- Brown-Henneaux: $H_{1} \sim \oint \mathrm{~d} \sigma \mathcal{J}^{2}$
- KdV generalization:

$$
H_{N} \sim \oint \mathrm{~d} \sigma R_{N+1}(\mathcal{J})
$$

where R_{N+1} is a Gelfand-Dikii differential polynomial:

$$
R_{N+1}^{\prime}=\frac{N+1}{2 N+1} \mathcal{D} R_{N} \quad \mathcal{D}:=\mathcal{J}^{\prime}+2 \mathcal{J} \partial_{\sigma}+\frac{1}{2} \partial_{\sigma}^{3}
$$

KdV integrable hierarchy
hierarchy of Hamiltonians:

- near horizon boundary conditions: $H_{0} \sim \oint \mathrm{~d} \sigma \mathcal{J}$
- Brown-Henneaux: $H_{1} \sim \oint \mathrm{~d} \sigma \mathcal{J}^{2}$
- KdV generalization:

$$
H_{N} \sim \oint \mathrm{~d} \sigma R_{N+1}(\mathcal{J})
$$

where R_{N+1} is a Gelfand-Dikii differential polynomial:

$$
R_{N+1}^{\prime}=\frac{N+1}{2 N+1} \mathcal{D} R_{N} \quad \mathcal{D}:=\mathcal{J}^{\prime}+2 \mathcal{J} \partial_{\sigma}+\frac{1}{2} \partial_{\sigma}^{3}
$$

- for $N=2$ field equations are KdV equation

$$
\dot{\mathcal{J}}=2 \mathcal{J} \mathcal{J}^{\prime}+\frac{1}{3} \mathcal{J}^{\prime \prime \prime}
$$

KdV integrable hierarchy
hierarchy of Hamiltonians:

- near horizon boundary conditions: $H_{0} \sim \oint \mathrm{~d} \sigma \mathcal{J}$
- Brown-Henneaux: $H_{1} \sim \oint \mathrm{~d} \sigma \mathcal{J}^{2}$
- KdV generalization:

$$
H_{N} \sim \oint \mathrm{~d} \sigma R_{N+1}(\mathcal{J})
$$

where R_{N+1} is a Gelfand-Dikii differential polynomial:

$$
R_{N+1}^{\prime}=\frac{N+1}{2 N+1} \mathcal{D} R_{N} \quad \mathcal{D}:=\mathcal{J}^{\prime}+2 \mathcal{J} \partial_{\sigma}+\frac{1}{2} \partial_{\sigma}^{3}
$$

- for $N=2$ field equations are KdV equation

$$
\dot{\mathcal{J}}=2 \mathcal{J} \mathcal{J}^{\prime}+\frac{1}{3} \mathcal{J}^{\prime \prime \prime}
$$

- for general N Hamiltonian density reads

$$
\mathcal{H}_{N} \sim \frac{1}{N+1} \mathcal{J}^{N+1}+\sum_{i=1}^{N-1} h_{i, N} \mathcal{J}^{N-i-1}\left(\partial_{\sigma}^{i} \mathcal{J}\right)^{2}+\mathcal{H}_{N}^{\mathrm{nl}} \quad \mathcal{J}=\Phi^{\prime}
$$

non-linear term in derivatives $\mathcal{H}_{N}^{\mathrm{nl}}$ exists only for $N \geq 5$; the $h_{i, N}$ are computable rational coefficients

Scaling properties

- for $N>1$ field equations have anisotropic scale invariance

$$
t \rightarrow \lambda^{2 N-1} t \quad \sigma \rightarrow \lambda \sigma \quad \Phi \rightarrow \lambda^{-1} \Phi
$$

action not invariant

Scaling properties

- for $N>1$ field equations have anisotropic scale invariance

$$
t \rightarrow \lambda^{2 N-1} t \quad \sigma \rightarrow \lambda \sigma \quad \Phi \rightarrow \lambda^{-1} \Phi
$$

action not invariant

- for $N \leq 1$ field equations and action invariant under

$$
t \rightarrow \lambda^{N} t \quad \sigma \rightarrow \lambda \sigma \quad \Phi \rightarrow \Phi
$$

Scaling properties

- for $N>1$ field equations have anisotropic scale invariance

$$
t \rightarrow \lambda^{2 N-1} t \quad \sigma \rightarrow \lambda \sigma \quad \Phi \rightarrow \lambda^{-1} \Phi
$$

action not invariant

- for $N \leq 1$ field equations and action invariant under

$$
t \rightarrow \lambda^{N} t \quad \sigma \rightarrow \lambda \sigma \quad \Phi \rightarrow \Phi
$$

- we are interested in taking the limit $N \rightarrow 0^{+}$

Scaling properties

- for $N>1$ field equations have anisotropic scale invariance

$$
t \rightarrow \lambda^{2 N-1} t \quad \sigma \rightarrow \lambda \sigma \quad \Phi \rightarrow \lambda^{-1} \Phi
$$

action not invariant

- for $N \leq 1$ field equations and action invariant under

$$
t \rightarrow \lambda^{N} t \quad \sigma \rightarrow \lambda \sigma \quad \Phi \rightarrow \Phi
$$

- we are interested in taking the limit $N \rightarrow 0^{+}$
- analytically continue $N \in[0,1]$, keeping scale invariance of action

Scaling properties

- for $N>1$ field equations have anisotropic scale invariance

$$
t \rightarrow \lambda^{2 N-1} t \quad \sigma \rightarrow \lambda \sigma \quad \Phi \rightarrow \lambda^{-1} \Phi
$$

action not invariant

- for $N \leq 1$ field equations and action invariant under

$$
t \rightarrow \lambda^{N} t \quad \sigma \rightarrow \lambda \sigma \quad \Phi \rightarrow \Phi
$$

- we are interested in taking the limit $N \rightarrow 0^{+}$
- analytically continue $N \in[0,1]$, keeping scale invariance of action
- consider continuous family of boundary Hamiltonians $(\varepsilon \in[0,1])$

$$
H_{\varepsilon}=\frac{k}{4 \pi} \frac{\zeta_{\varepsilon}}{\varepsilon(1+\varepsilon)} \oint \mathrm{d} \sigma \mathcal{J}^{1+\varepsilon}
$$

Scaling properties

- for $N>1$ field equations have anisotropic scale invariance

$$
t \rightarrow \lambda^{2 N-1} t \quad \sigma \rightarrow \lambda \sigma \quad \Phi \rightarrow \lambda^{-1} \Phi
$$

action not invariant

- for $N \leq 1$ field equations and action invariant under

$$
t \rightarrow \lambda^{N} t \quad \sigma \rightarrow \lambda \sigma \quad \Phi \rightarrow \Phi
$$

- we are interested in taking the limit $N \rightarrow 0^{+}$
- analytically continue $N \in[0,1]$, keeping scale invariance of action
- consider continuous family of boundary Hamiltonians $(\varepsilon \in[0,1])$

$$
H_{\varepsilon}=\frac{k}{4 \pi} \frac{\zeta_{\varepsilon}}{\varepsilon(1+\varepsilon)} \oint \mathrm{d} \sigma \mathcal{J}^{1+\varepsilon}
$$

- note that we rescaled by $1 / \varepsilon$ to have non-trivial limit $\varepsilon \rightarrow 0^{+}$!

KdV scaling limit for near horizon Hamiltonian

- take now the limit $\varepsilon \rightarrow 0^{+}$

$$
H_{\log }:=\lim _{\varepsilon \rightarrow 0^{+}} H_{\varepsilon}=\frac{k \zeta_{\varepsilon}}{4 \pi} \oint \mathrm{~d} \sigma \mathcal{J} \ln \mathcal{J}
$$

KdV scaling limit for near horizon Hamiltonian

- take now the limit $\varepsilon \rightarrow 0^{+}$

$$
H_{\log }:=\lim _{\varepsilon \rightarrow 0^{+}} H_{\varepsilon}=\frac{k \zeta_{\varepsilon}}{4 \pi} \oint \mathrm{~d} \sigma \mathcal{J} \ln \mathcal{J}
$$

- limiting boundary action reads

$$
I_{\log }[\Phi]=-\frac{k}{4 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma\left(\frac{1}{2} \dot{\Phi} \Phi^{\prime}+\zeta_{\varepsilon} \Phi^{\prime} \ln \left(\Phi^{\prime}\right)\right)
$$

KdV scaling limit for near horizon Hamiltonian

- take now the limit $\varepsilon \rightarrow 0^{+}$

$$
H_{\log }:=\lim _{\varepsilon \rightarrow 0^{+}} H_{\varepsilon}=\frac{k \zeta_{\varepsilon}}{4 \pi} \oint \mathrm{~d} \sigma \mathcal{J} \ln \mathcal{J}
$$

- limiting boundary action reads

$$
I_{\log }[\Phi]=-\frac{k}{4 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma\left(\frac{1}{2} \dot{\Phi} \Phi^{\prime}+\zeta_{\varepsilon} \Phi^{\prime} \ln \left(\Phi^{\prime}\right)\right)
$$

- field equations

$$
\dot{\Phi}^{\prime}=-\zeta_{\varepsilon} \frac{\Phi^{\prime \prime}}{\Phi^{\prime}}
$$

yield simple solution for modes in limit of large J_{0}

KdV scaling limit for near horizon Hamiltonian

- take now the limit $\varepsilon \rightarrow 0^{+}$

$$
H_{\mathrm{log}}:=\lim _{\varepsilon \rightarrow 0^{+}} H_{\varepsilon}=\frac{k \zeta_{\varepsilon}}{4 \pi} \oint \mathrm{~d} \sigma \mathcal{J} \ln \mathcal{J}
$$

- limiting boundary action reads

$$
I_{\log }[\Phi]=-\frac{k}{4 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma\left(\frac{1}{2} \dot{\Phi} \Phi^{\prime}+\zeta_{\varepsilon} \Phi^{\prime} \ln \left(\Phi^{\prime}\right)\right)
$$

- field equations

$$
\dot{\Phi}^{\prime}=-\zeta_{\varepsilon} \frac{\Phi^{\prime \prime}}{\Phi^{\prime}}
$$

yield simple solution for modes in limit of large J_{0}

- in that limit boundary action reads

$$
I_{\log }\left[\Phi_{0}, J_{n}, \Pi_{n}\right]=\int \mathrm{d} t\left(\dot{\Phi}_{0} \Pi_{0}+\sum_{n>0} \dot{J}_{n} \Pi_{n}-\frac{i k \zeta_{\varepsilon}}{4 \Pi_{0}} \sum_{n>0} n \Pi_{n} J_{n}\right)
$$

KdV scaling limit for near horizon Hamiltonian

- take now the limit $\varepsilon \rightarrow 0^{+}$

$$
H_{\log }:=\lim _{\varepsilon \rightarrow 0^{+}} H_{\varepsilon}=\frac{k \zeta_{\varepsilon}}{4 \pi} \oint \mathrm{~d} \sigma \mathcal{J} \ln \mathcal{J}
$$

- limiting boundary action reads

$$
I_{\log }[\Phi]=-\frac{k}{4 \pi} \int \mathrm{~d} t \mathrm{~d} \sigma\left(\frac{1}{2} \dot{\Phi} \Phi^{\prime}+\zeta_{\varepsilon} \Phi^{\prime} \ln \left(\Phi^{\prime}\right)\right)
$$

- field equations

$$
\dot{\Phi}^{\prime}=-\zeta_{\varepsilon} \frac{\Phi^{\prime \prime}}{\Phi^{\prime}}
$$

yield simple solution for modes in limit of large J_{0}

- in that limit boundary action reads

$$
I_{\log }\left[\Phi_{0}, J_{n}, \Pi_{n}\right]=\int \mathrm{d} t\left(\dot{\Phi}_{0} \Pi_{0}+\sum_{n>0} \dot{J}_{n} \Pi_{n}-\frac{i k \zeta_{\varepsilon}}{4 \Pi_{0}} \sum_{n>0} n \Pi_{n} J_{n}\right)
$$

- achieved goal: Hamiltonian no longer commutes with everything!

Descendants are no longer soft

- replace again $i\{,\} \rightarrow[$,

Descendants are no longer soft

- replace again $i\{,\} \rightarrow[$,
- consider descendants

$$
J_{-n}|0\rangle
$$

of highest weight vacuum $J_{n}|0\rangle=0$ for all $n \geq 0$

Descendants are no longer soft

- replace again $i\{,\} \rightarrow[$,
- consider descendants

$$
J_{-n}|0\rangle
$$

of highest weight vacuum $J_{n}|0\rangle=0$ for all $n \geq 0$

- calculate energy of such excitations

$$
H_{\log } J_{-n}|0\rangle=\left[H_{\log }, J_{-n}\right]|0\rangle=\frac{\zeta_{\varepsilon}}{J_{0}} n J_{-n}|0\rangle
$$

Descendants are no longer soft

- replace again $i\{,\} \rightarrow[$,
- consider descendants

$$
J_{-n}|0\rangle
$$

of highest weight vacuum $J_{n}|0\rangle=0$ for all $n \geq 0$

- calculate energy of such excitations

$$
H_{\log } J_{-n}|0\rangle=\left[H_{\log }, J_{-n}\right]|0\rangle=\frac{\zeta_{\varepsilon}}{J_{0}} n J_{-n}|0\rangle
$$

Energy eigenvalues linear in mode numer n

Outline

Overture

Hamiltonian reduction

Near horizon boundary conditions

Near horizon Hamiltonian

KdV deformation

Conclusions

Relations to fluff proposal? (Afshar, Grumiller, Sheikh-Jabbari, Yavartanoo '17)

- conjectured semi-classical set of BTZ microstates

$$
\left|\mathrm{BTZ} \operatorname{micro}\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle=\prod{J_{-n_{i}^{+}}^{+} J_{-n_{i}^{-}}^{-}}^{-10\rangle}
$$

labelled by positive integers $\left\{n_{i}^{ \pm}\right\}$subject to spectral constraints

$$
\sum n_{i}^{ \pm}=c \Delta^{ \pm} \quad \Delta^{ \pm}=\frac{1}{2}\left(\ell M_{\mathrm{BTZ}} \pm J_{\mathrm{BTZ}}\right)=\frac{c}{24}\left(J_{0}^{ \pm}\right)^{2}
$$

Relations to fluff proposal? (Afshar, Grumiller, Sheikh-Jabbari, Yavartanoo '17)

- conjectured semi-classical set of BTZ microstates

$$
\left|\mathrm{BTZ} \operatorname{micro}\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle=\prod{J_{-n_{i}^{+}}^{+} J_{-n_{i}^{-}}^{-}}^{-10\rangle}
$$

labelled by positive integers $\left\{n_{i}^{ \pm}\right\}$subject to spectral constraints

$$
\sum n_{i}^{ \pm}=c \Delta^{ \pm} \quad \Delta^{ \pm}=\frac{1}{2}\left(\ell M_{\mathrm{BTZ}} \pm J_{\mathrm{BTZ}}\right)=\frac{c}{24}\left(J_{0}^{ \pm}\right)^{2}
$$

- required input for fluff proposal:
- excitations fall into $u(1)$ current algebra representations
- zero mode charge J_{0} has canonically conjugate Φ_{0}
- soft hair degeneracy lifted to energies linear in mode number n all of the above fulfilled!

Relations to fluff proposal? (Afshar, Grumiller, Sheikh-Jabbari, Yavartanoo '17)

- conjectured semi-classical set of BTZ microstates

$$
\left|\mathrm{BTZ} \operatorname{micro}\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle=\prod{J_{-n_{i}^{+}}^{+} J_{-n_{i}^{-}}^{-}}^{-10\rangle}
$$

labelled by positive integers $\left\{n_{i}^{ \pm}\right\}$subject to spectral constraints

$$
\sum n_{i}^{ \pm}=c \Delta^{ \pm} \quad \Delta^{ \pm}=\frac{1}{2}\left(\ell M_{\mathrm{BTZ}} \pm J_{\mathrm{BTZ}}\right)=\frac{c}{24}\left(J_{0}^{ \pm}\right)^{2}
$$

- required input for fluff proposal:
- excitations fall into $u(1)$ current algebra representations
- zero mode charge J_{0} has canonically conjugate Φ_{0}
- soft hair degeneracy lifted to energies linear in mode number n all of the above fulfilled!
- missing piece of data:

$$
\zeta_{\varepsilon}^{ \pm}=\frac{J_{0}^{ \pm}}{c}
$$

Relations to fluff proposal? (Afshar, Grumiller, Sheikh-Jabbari, Yavartanoo '17)

- conjectured semi-classical set of BTZ microstates

$$
\left|\mathrm{BTZ} \operatorname{micro}\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle=\prod{J_{-n_{i}^{+}}^{+} J_{-n_{i}^{-}}^{-}}^{-10\rangle}
$$

labelled by positive integers $\left\{n_{i}^{ \pm}\right\}$subject to spectral constraints

$$
\sum n_{i}^{ \pm}=c \Delta^{ \pm} \quad \Delta^{ \pm}=\frac{1}{2}\left(\ell M_{\mathrm{BTZ}} \pm J_{\mathrm{BTZ}}\right)=\frac{c}{24}\left(J_{0}^{ \pm}\right)^{2}
$$

- required input for fluff proposal:
- excitations fall into $u(1)$ current algebra representations
- zero mode charge J_{0} has canonically conjugate Φ_{0}
- soft hair degeneracy lifted to energies linear in mode number n all of the above fulfilled!
- missing piece of data:

$$
\zeta_{\varepsilon}^{ \pm}=\frac{J_{0}^{ \pm}}{c}
$$

Fluff proposal intriguing, but not (yet) derived from first principles

Relations to ultrarelativistic physics?

Carrollian limit

- Floreanini-Jackiw action
has parameter μ giving the propagation speed of the chiral boson

Relations to ultrarelativistic physics?

Carrollian limit

- Floreanini-Jackiw action
has parameter μ giving the propagation speed of the chiral boson
- near horizon boundary action yields $\mu=0$

Relations to ultrarelativistic physics?

Carrollian limit

- Floreanini-Jackiw action
has parameter μ giving the propagation speed of the chiral boson
- near horizon boundary action yields $\mu=0$
- this is the Carrollian limit (compare with Donnay, Marteau and Penna)

Relations to ultrarelativistic physics?

Ultrarelativistic strings

- other consideration: start with bosonic string theory

$$
X_{ \pm}^{\mu}(t \pm \sigma)=\frac{x^{\mu}}{2}+\frac{\ell_{s}^{2}}{2} p_{ \pm}^{\mu}(t \pm \sigma)+\frac{\ell_{s}}{\sqrt{2}} \sum_{n \neq 0} \frac{\alpha_{-n}^{ \pm}}{i n} e^{i n(t \pm \sigma)}
$$

and take naive ultrarelativtistic limit $t \rightarrow \epsilon t, \sigma \rightarrow \sigma, \epsilon \rightarrow 0$

Relations to ultrarelativistic physics?

Ultrarelativistic strings

- other consideration: start with bosonic string theory

$$
X_{ \pm}^{\mu}(t \pm \sigma)=\frac{x^{\mu}}{2}+\frac{\ell_{s}^{2}}{2} p_{ \pm}^{\mu}(t \pm \sigma)+\frac{\ell_{s}}{\sqrt{2}} \sum_{n \neq 0} \frac{\alpha_{-n}^{ \pm}}{i n} e^{i n(t \pm \sigma)}
$$

and take naive ultrarelativtistic limit $t \rightarrow \epsilon t, \sigma \rightarrow \sigma, \epsilon \rightarrow 0$
result

$$
X_{ \pm}^{\mu}(\sigma)=\frac{x^{\mu}}{2} \pm \frac{\ell_{s}^{2}}{2} p_{ \pm}^{\mu} \sigma+\frac{\ell_{s}}{\sqrt{2}} \sum_{n \neq 0} \frac{\alpha_{-n}^{ \pm}}{i n} e^{ \pm i n \sigma}
$$

equivalent to our on-shell mode expansion upon identifying

$$
x^{\mu}=2 \Phi_{0} \quad \ell_{s}^{2} p_{+}^{\mu}=2 J_{0} \quad \ell_{s} \alpha_{-n}^{+}=\sqrt{2} J_{n}
$$

- sector comparison works analogously

Relations to ultrarelativistic physics?

Ultrarelativistic strings

- other consideration: start with bosonic string theory

$$
X_{ \pm}^{\mu}(t \pm \sigma)=\frac{x^{\mu}}{2}+\frac{\ell_{s}^{2}}{2} p_{ \pm}^{\mu}(t \pm \sigma)+\frac{\ell_{s}}{\sqrt{2}} \sum_{n \neq 0} \frac{\alpha_{-n}^{ \pm}}{i n} e^{i n(t \pm \sigma)}
$$

and take naive ultrarelativtistic limit $t \rightarrow \epsilon t, \sigma \rightarrow \sigma, \epsilon \rightarrow 0$

- result

$$
X_{ \pm}^{\mu}(\sigma)=\frac{x^{\mu}}{2} \pm \frac{\ell_{s}^{2}}{2} p_{ \pm}^{\mu} \sigma+\frac{\ell_{s}}{\sqrt{2}} \sum_{n \neq 0} \frac{\alpha_{-n}^{ \pm}}{i n} e^{ \pm i n \sigma}
$$

equivalent to our on-shell mode expansion upon identifying

$$
x^{\mu}=2 \Phi_{0} \quad \ell_{s}^{2} p_{+}^{\mu}=2 J_{0} \quad \ell_{s} \alpha_{-n}^{+}=\sqrt{2} J_{n}
$$

- sector comparison works analogously

Confirms suspicion that nearly tensionless strings key in near horizon description of generic black holes

Thanks for your attention!

