Flat space higher spin gravity

Daniel Grumiller

Institute for Theoretical Physics
TU Wien

Dutch String meeting, Groningen, February 2015

 Gary, Riegler, Rosseel, Salzer, Sarkar, Schöller, Simon, ...
Outline

Motivations

Holography basics

Flat space gravity

Flat space higher spin gravity

Outline

Motivations

Holography basics

Flat space higher spin gravity

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity

Keine Experimente! Konrad Adenauer , 1

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)
- Holography
- Holographic principle realized in Nature? (yes/no)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)
- Holography
- Holographic principle realized in Nature? (yes/no)
- Quantum gravity via AdS/CFT? (define quantum gravity in AdS by constructing/postulating dual CFT)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)
- Holography
- Holographic principle realized in Nature? (yes/no)
- Quantum gravity via AdS/CFT? (define quantum gravity in AdS by constructing/postulating dual CFT)
- How general is holography? (non-unitary holography, higher spin holography, flat space holography, non-AdS holography, ...)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)
- Holography
- Holographic principle realized in Nature? (yes/no)
- Quantum gravity via AdS/CFT? (define quantum gravity in AdS by constructing/postulating dual CFT)
- How general is holography? (non-unitary holography, higher spin holography, flat space holography, non-AdS holography, ...)
- Applications
- Gauge gravity correspondence (plasmas, condensed matter, ...)

Specific motivation for 3D

Gravity in 3D is simpler than in higher dimensions

Specific motivation for 3D

Gravity in 3D is simpler than in higher dimensions

$$
\begin{aligned}
& \text { Simplicity is } \\
& \text { the ultimate } \\
& \text { sophistication }
\end{aligned}
$$

Specific motivation for flat space higher spin gravity

Massless higher spin theories constrained by no-gos!

- Coleman-Mandula '67
- Aragone-Deser '79
- Weinberg-Witten '80
- recent summary: Bekaert, Boulanger, Sundell '12

Conclusion: there are no consistent interacting massless higher spin theories in 4- (or higher-) dimensional flat space

Specific motivation for flat space higher spin gravity

Massless higher spin theories constrained by no-gos!

- Coleman-Mandula '67
- Aragone-Deser '79
- Weinberg-Witten '80
- recent summary: Bekaert, Boulanger, Sundell '12

Conclusion: there are no consistent interacting massless higher spin theories in 4- (or higher-) dimensional flat space

Circumventing no-gos:

- Vasiliev '87-'90: higher spin theories in (A)dS

Specific motivation for flat space higher spin gravity

Massless higher spin theories constrained by no-gos!

- Coleman-Mandula '67
- Aragone-Deser '79
- Weinberg-Witten '80
- recent summary: Bekaert, Boulanger, Sundell '12

Conclusion: there are no consistent interacting massless higher spin theories in 4- (or higher-) dimensional flat space

Circumventing no-gos:

- Vasiliev '87-'90: higher spin theories in (A)dS
- Afshar, Bagchi, Fareghbal, DG, Rosseel '13; Gonzalez, Matulich, Pino, Troncoso '13: flat space higher spin theories in 3d

Goals of this talk

1. Review general aspects of holography in 3D

Goals of this talk

1. Review general aspects of holography in 3D
2. Discuss flat space holography

Goals of this talk

1. Review general aspects of holography in 3D
2. Discuss flat space holography
3. Generalize to higher spin holography

Goals of this talk

1. Review general aspects of holography in 3D
2. Discuss flat space holography
3. Generalize to higher spin holography
4. List selected open issues

Goals of this talk

1. Review general aspects of holography in 3D
2. Discuss flat space holography
3. Generalize to higher spin holography
4. List selected open issues

Address these issues in 3D!

Outline

Motivations

Holography basics

Flat space gravity

Flat space higher spin gravity

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D

Interesting generic constraints from CFT_{2} !
e.g. Hellerman '09, Hartman, Keller, Stoica '14

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)
- Simple microstate counting from $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)
- Simple microstate counting from $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
- Hawking-Page phase transition hot $\operatorname{AdS} \leftrightarrow$ BTZ

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)
- Simple microstate counting from $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
- Hawking-Page phase transition hot $\operatorname{AdS} \leftrightarrow$ BTZ
- Simple checks of Ryu-Takayanagi proposal

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)
- Simple microstate counting from $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
- Hawking-Page phase transition hot $\mathrm{AdS} \leftrightarrow$ BTZ
- Simple checks of Ryu-Takayanagi proposal

Caveat: while there are many string compactifications with AdS_{3} factor, applying holography just to AdS_{3} factor does not capture everything!

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle Example: Einstein gravity with Dirichlet boundary conditions

$$
I=-\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{3} x \sqrt{|g|}\left(R+\frac{2}{\ell^{2}}\right)
$$

with $\delta g=$ fixed at the boundary

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions Example: asymptotically AdS

$$
\mathrm{d} s^{2}=\mathrm{d} \rho^{2}+\left(e^{2 \rho / \ell} \gamma_{i j}^{(0)}+\gamma_{i j}^{(2)}+\ldots\right) \mathrm{d} x^{i} \mathrm{~d} x^{j}
$$

with $\delta \gamma^{(0)}=0$ for $\rho \rightarrow \infty$

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's

- Find and classify all constraints
- Construct canonical gauge generators
- Add boundary terms and get (variation of) canonical charges
- Check integrability of canonical charges
- Check finiteness of canonical charges
- Check conservation (in time) of canonical charges
- Calculate Dirac bracket algebra of canonical charges

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's

- Find and classify all constraints
- Construct canonical gauge generators
- Add boundary terms and get (variation of) canonical charges
- Check integrability of canonical charges
- Check finiteness of canonical charges
- Check conservation (in time) of canonical charges
- Calculate Dirac bracket algebra of canonical charges

Example: Brown-Henneaux analysis for 3D Einstein gravity

$$
\begin{gathered}
\{Q[\varepsilon], Q[\eta]\}=\delta_{\varepsilon} Q[\eta] \\
Q[\varepsilon] \sim \oint \mathrm{d} \varphi \mathcal{L}(\varphi) \varepsilon(\varphi) \\
\delta_{\varepsilon} \mathcal{L}=\mathcal{L} \varepsilon+2 \mathcal{L} \varepsilon^{\prime}+\frac{\ell}{16 \pi G_{N}} \varepsilon^{\prime \prime \prime}
\end{gathered}
$$

Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges Example: Two copies of Virasoro algebra

$$
\left[\mathcal{L}_{n}, \mathcal{L}_{m}\right]=(n-m) \mathcal{L}_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0}
$$

with Brown-Henneaux central charge

$$
c=\frac{3 \ell}{2 G_{N}}
$$

Reminder: ASA = quotient algebra of asymptotic symmetries by 'trivial' asymptotic symmetries with zero canonical charges

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA

Example: semi-classical ASA in spin-3 gravity (Henneaux, Rey '10; Campoleoni, Pfenninger, Fredenhagen, Theisen '10)

$$
\left[W_{n}, W_{m}\right]=\frac{16}{5 c} \sum_{p} L_{p} L_{n+m-p}+\ldots
$$

quantum ASA

$$
\left[W_{n}, W_{m}\right]=\frac{16}{5 c+22} \sum_{p}: L_{p} L_{n+m-p}:+\ldots
$$

Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA

Example:

Afshar et al '12
Discrete set of Newton constant values compatible with unitarity
(3D spin- N gravity in next-to-principal embedding)

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Example: Monster CFT in (flat space) chiral gravity

Witten '07

Li, Song \& Strominger '08
Bagchi, Detournay \& DG '12

$$
Z(q)=J(q)=\frac{1}{q}+(1+196883) q+\mathcal{O}\left(q^{2}\right)
$$

Note: $\ln 196883 \approx 12.2=4 \pi+$ quantum corrections

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify Examples: too many!

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Goal of this talk:

Apply algorithm above to flat space holography in 3D higher spin theories

Outline

Motivations

Holography basics

Flat space gravity

Flat space higher spin gravity

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)
if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- This is nothing but the BMS_{3} algebra (or $\mathrm{GCA}_{2}, \mathrm{URCA}_{2}, \mathrm{CCA}_{2}$)!

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- This is nothing but the BMS_{3} algebra (or $\mathrm{GCA}_{2}, \mathrm{URCA}_{2}, \mathrm{CCA}_{2}$)!
- Example where it does not work easily: boundary conditions!

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- This is nothing but the BMS_{3} algebra (or $\mathrm{GCA}_{2}, \mathrm{URCA}_{2}, \mathrm{CCA}_{2}$)!
- Example where it does not work easily: boundary conditions!
- Example where it does not work at all: highest weight conditions!

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)
- extrapolate from dS: should be non-unitary (?)

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)
- extrapolate from dS: should be non-unitary (?)
- directly in flat space: both options realized, depending on details of model

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)
- extrapolate from dS: should be non-unitary (?)
- directly in flat space: both options realized, depending on details of model

Many open issues in flat space holography!
(Higher spin) gravity as Chern-Simons gauge theory...
... with weird boundary conditions (Achucarro \& Townsend '86; Witten '88; Bañados '96)
CS action (for AdS: sl(2) $\oplus \operatorname{sl}(2)$):

$$
S_{\mathrm{CS}}=\frac{k}{4 \pi} \int \mathrm{CS}(A)-\frac{k}{4 \pi} \int \mathrm{CS}(\bar{A})
$$

Variational principle:

$$
\left.\delta S_{\mathrm{CS}}\right|_{\mathrm{EOM}}=\frac{k}{4 \pi} \int \operatorname{Tr}(A \wedge \delta A-\bar{A} \wedge \delta \bar{A})
$$

Well-defined for boundary conditions (similarly for \bar{A})

$$
A_{+}=0 \quad \text { or } \quad A_{-}=0 \quad \text { boundary coordinates } x^{ \pm}
$$

Example: asymptotically AdS_{3} (Cartan-version of Brown-Henneaux)
(Higher spin) gravity as Chern-Simons gauge theory...
... with weird boundary conditions (Achucarro \& Townsend '86; Witten '88; Bañados '96)
CS action (for AdS: sl(2$) \oplus \operatorname{sl}(2)$):

$$
S_{\mathrm{CS}}=\frac{k}{4 \pi} \int \mathrm{CS}(A)-\frac{k}{4 \pi} \int \mathrm{CS}(\bar{A})
$$

Variational principle:

$$
\left.\delta S_{\mathrm{CS}}\right|_{\mathrm{EOM}}=\frac{k}{4 \pi} \int \operatorname{Tr}(A \wedge \delta A-\bar{A} \wedge \delta \bar{A})
$$

Well-defined for boundary conditions (similarly for \bar{A})

$$
A_{+}=0 \quad \text { or } \quad A_{-}=0 \quad \text { boundary coordinates } x^{ \pm}
$$

Example: asymptotically AdS_{3} (Cartan-version of Brown-Henneaux)

$$
\begin{array}{ll}
A_{\rho}=L_{0} & \bar{A}_{\rho}=-L_{0} \\
A_{+}=e^{\rho} L_{1}+e^{-\rho} L\left(x^{+}\right) L_{-1} & \bar{A}_{+}=0 \\
A_{-}=0 & \bar{A}_{-}=-e^{\rho} L_{-1}-e^{-\rho} \bar{L}\left(x^{-}\right) L_{1}
\end{array}
$$

Dreibein: $e / \ell \sim A-\bar{A}$, spin-connection: $\omega \sim A+\bar{A}$

İnönü-Wigner contraction of Virasoro (Barnich \& Compère '06) BMS_{3} and GCA $_{2}$ (or rather, URCA ${ }_{2}$)

- Take two copies of Virasoro, generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$, central charges c, \bar{c}

İnönü-Wigner contraction of Virasoro (Barnich \& Compère '06) BMS_{3} and GCA $_{2}$ (or rather, URCA $_{2}$)

- Take two copies of Virasoro, generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$, central charges c, \bar{c}
- Define superrotations L_{n} and supertranslations M_{n}

$$
L_{n}:=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}:=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

İnönü-Wigner contraction of Virasoro (Barnich \& Compère '06) BMS_{3} and GCA_{2} (or rather, URCA ${ }_{2}$)

- Take two copies of Virasoro, generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$, central charges c, \bar{c}
- Define superrotations L_{n} and supertranslations M_{n}

$$
L_{n}:=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}:=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make ultrarelativistic boost, $\ell \rightarrow \infty$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+c_{L} \frac{1}{12} \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+c_{M} \frac{1}{12} \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

Global part: contracted to isl(2) (generators: $\left.L_{ \pm 1}, L_{0}, M_{ \pm 1}, M_{0}\right)$

İnönü-Wigner contraction of Virasoro (Barnich \& Compère '06) BMS_{3} and GCA $_{2}$ (or rather, URCA $_{2}$)

- Take two copies of Virasoro, generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$, central charges c, \bar{c}
- Define superrotations L_{n} and supertranslations M_{n}

$$
L_{n}:=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}:=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make ultrarelativistic boost, $\ell \rightarrow \infty$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+c_{L} \frac{1}{12} \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+c_{M} \frac{1}{12} \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- Is precisely the (centrally extended) BMS_{3} algebra!
- Central charges:

$$
c_{L}=c-\bar{c} \quad c_{M}=(c+\bar{c}) / \ell
$$

İnönü-Wigner contraction of Virasoro (Barnich \& Compère '06) BMS_{3} and GCA $_{2}$ (or rather, URCA ${ }_{2}$)

- Take two copies of Virasoro, generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$, central charges c, \bar{c}
- Define superrotations L_{n} and supertranslations M_{n}

$$
L_{n}:=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}:=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make ultrarelativistic boost, $\ell \rightarrow \infty$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+c_{L} \frac{1}{12} \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+c_{M} \frac{1}{12} \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- Is precisely the (centrally extended) BMS_{3} algebra!
- Central charges:

$$
c_{L}=c-\bar{c} \quad c_{M}=(c+\bar{c}) / \ell
$$

Example TMG (with gravitational CS coupling μ and Newton constant G):

$$
c_{L}=\frac{3}{\mu G} \quad c_{M}=\frac{3}{G}
$$

Consequence of ultrarelativistic boost for AdS boundary

AdS-boundary:
Limit $\ell \rightarrow \infty$

Flat space boundary:

Null infinity holography!

Contraction on gravity side

AdS metric $(\varphi \sim \varphi+2 \pi)$:

$$
\mathrm{d} s_{\mathrm{AdS}}^{2}=\mathrm{d}(\ell \rho)^{2}-\cosh ^{2}\left(\frac{\ell \rho}{\ell}\right) \mathrm{d} t^{2}+\ell^{2} \sinh ^{2}\left(\frac{\ell \rho}{\ell}\right) \mathrm{d} \varphi^{2}
$$

Contraction on gravity side

AdS metric $(\varphi \sim \varphi+2 \pi)$:

$$
\mathrm{d} s_{\mathrm{AdS}}^{2}=\mathrm{d}(\ell \rho)^{2}-\cosh ^{2}\left(\frac{\ell \rho}{\ell}\right) \mathrm{d} t^{2}+\ell^{2} \sinh ^{2}\left(\frac{\ell \rho}{\ell}\right) \mathrm{d} \varphi^{2}
$$

Limit $\ell \rightarrow \infty(r=\ell \rho)$:

$$
\mathrm{d} s_{\text {Flat }}^{2}=\mathrm{d} r^{2}-\mathrm{d} t^{2}+r^{2} \mathrm{~d} \varphi^{2}=-\mathrm{d} u^{2}-2 \mathrm{~d} u \mathrm{~d} r+r^{2} \mathrm{~d} \varphi^{2}
$$

Contraction on gravity side

AdS metric $(\varphi \sim \varphi+2 \pi)$:

$$
\mathrm{d} s_{\mathrm{AdS}}^{2}=\mathrm{d}(\ell \rho)^{2}-\cosh ^{2}\left(\frac{\ell \rho}{\ell}\right) \mathrm{d} t^{2}+\ell^{2} \sinh ^{2}\left(\frac{\ell \rho}{\ell}\right) \mathrm{d} \varphi^{2}
$$

Limit $\ell \rightarrow \infty(r=\ell \rho)$:

$$
\mathrm{d} s_{\text {Flat }}^{2}=\mathrm{d} r^{2}-\mathrm{d} t^{2}+r^{2} \mathrm{~d} \varphi^{2}=-\mathrm{d} u^{2}-2 \mathrm{~d} u \mathrm{~d} r+r^{2} \mathrm{~d} \varphi^{2}
$$

BTZ metric:

$$
\mathrm{d} s_{\mathrm{BTZ}}^{2}=-\frac{\left(\frac{r^{2}}{\ell^{2}}-\frac{r_{+}^{2}}{\ell^{2}}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \mathrm{~d} r^{2}}{\left(\frac{r^{2}}{\ell^{2}}-\frac{r_{+}^{2}}{\ell^{2}}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{\frac{r_{+}}{\ell} r_{-}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

Contraction on gravity side

AdS metric $(\varphi \sim \varphi+2 \pi)$:

$$
\mathrm{d} s_{\mathrm{AdS}}^{2}=\mathrm{d}(\ell \rho)^{2}-\cosh ^{2}\left(\frac{\ell \rho}{\ell}\right) \mathrm{d} t^{2}+\ell^{2} \sinh ^{2}\left(\frac{\ell \rho}{\ell}\right) \mathrm{d} \varphi^{2}
$$

Limit $\ell \rightarrow \infty(r=\ell \rho)$:

$$
\mathrm{d} s_{\text {Flat }}^{2}=\mathrm{d} r^{2}-\mathrm{d} t^{2}+r^{2} \mathrm{~d} \varphi^{2}=-\mathrm{d} u^{2}-2 \mathrm{~d} u \mathrm{~d} r+r^{2} \mathrm{~d} \varphi^{2}
$$

BTZ metric:

$$
\mathrm{d} s_{\mathrm{BTZ}}^{2}=-\frac{\left(\frac{r^{2}}{\ell^{2}}-\frac{r_{+}^{2}}{\ell^{2}}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \mathrm{~d} r^{2}}{\left(\frac{r^{2}}{\ell^{2}}-\frac{r_{+}^{2}}{\ell^{2}}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{\frac{r_{+}}{\ell} r_{-}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

Limit $\ell \rightarrow \infty\left(\hat{r}_{+}=\frac{r_{+}}{\ell}=\right.$ finite $)$:

$$
\mathrm{d} s_{\mathrm{FSC}}^{2}=\hat{r}_{+}^{2}\left(1-\frac{r_{-}^{2}}{r^{2}}\right) \mathrm{d} t^{2}-\frac{1}{1-\frac{r_{-}^{2}}{r^{2}}} \frac{\mathrm{~d} r^{2}}{\hat{r}_{+}^{2}}+r^{2}\left(\mathrm{~d} \varphi-\frac{\hat{r}_{+} r_{-}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

Contraction on gravity side

AdS metric $(\varphi \sim \varphi+2 \pi)$:

$$
\mathrm{d} s_{\mathrm{AdS}}^{2}=\mathrm{d}(\ell \rho)^{2}-\cosh ^{2}\left(\frac{\ell \rho}{\ell}\right) \mathrm{d} t^{2}+\ell^{2} \sinh ^{2}\left(\frac{\ell \rho}{\ell}\right) \mathrm{d} \varphi^{2}
$$

Limit $\ell \rightarrow \infty(r=\ell \rho)$:

$$
\mathrm{d} s_{\text {Flat }}^{2}=\mathrm{d} r^{2}-\mathrm{d} t^{2}+r^{2} \mathrm{~d} \varphi^{2}=-\mathrm{d} u^{2}-2 \mathrm{~d} u \mathrm{~d} r+r^{2} \mathrm{~d} \varphi^{2}
$$

BTZ metric:

$$
\mathrm{d} s_{\mathrm{BTZ}}^{2}=-\frac{\left(\frac{r^{2}}{\ell^{2}}-\frac{r_{+}^{2}}{\ell^{2}}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \mathrm{~d} r^{2}}{\left(\frac{r^{2}}{\ell^{2}}-\frac{r_{+}^{2}}{\ell^{2}}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{\frac{r_{+}}{\ell} r_{-}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

Limit $\ell \rightarrow \infty\left(\hat{r}_{+}=\frac{r_{+}}{\ell}=\right.$ finite $)$:

$$
\mathrm{d} s_{\mathrm{FSC}}^{2}=\hat{r}_{+}^{2}\left(1-\frac{r_{-}^{2}}{r^{2}}\right) \mathrm{d} t^{2}-\frac{1}{1-\frac{r_{-}^{2}}{r^{2}}} \frac{\mathrm{~d} r^{2}}{\hat{r}_{+}^{2}}+r^{2}\left(\mathrm{~d} \varphi-\frac{\hat{r}_{+} r_{-}}{r^{2}} \mathrm{~d} t\right)^{2}
$$

Shifted-boost orbifold studied by Cornalba \& Costa more than decade ago Describes expanding (contracting) Universe in flat space Cosmological horizon at $r=r_{-}$, screening CTCs at $r<0$

Outline

Motivations

Holography basics

Flat space gravity

Flat space higher spin gravity

Flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

isl(3) algebra (spin 3 extension of global part of BMS/GCA algebra)

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m} \\
{\left[L_{n}, U_{m}\right] } & =(2 n-m) U_{n+m} \\
{\left[M_{n}, U_{m}\right]=\left[L_{n}, V_{m}\right] } & =(2 n-m) V_{n+m} \\
{\left[U_{n}, U_{m}\right] } & =(n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m} \\
{\left[U_{n}, V_{m}\right] } & =(n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}
\end{aligned}
$$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

- Same type of boundary conditions as for spin 2:

$$
\mathcal{A}(r, t, \varphi)=b^{-1}(r)(\mathrm{d}+a(t, \varphi)+o(1)) b(r)
$$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

- Same type of boundary conditions as for spin 2 :

$$
\mathcal{A}(r, t, \varphi)=b^{-1}(r)(\mathrm{d}+a(t, \varphi)+o(1)) b(r)
$$

- Flat space boundary conditions: $b(r)=\exp \left(\frac{1}{2} r M_{-1}\right)$ and

$$
\begin{aligned}
a(t, \varphi)= & \left(M_{1}-M(\varphi) M_{-1}-V(\varphi) V_{-2}\right) \mathrm{d} t \\
& +\left(L_{1}-M(\varphi) L_{-1}-V(\varphi) U_{-2}-L(\varphi) M_{-1}-Z(\varphi) V_{-2}\right) \mathrm{d} \varphi
\end{aligned}
$$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

- Same type of boundary conditions as for spin 2 :

$$
\mathcal{A}(r, t, \varphi)=b^{-1}(r)(\mathrm{d}+a(t, \varphi)+o(1)) b(r)
$$

- Flat space boundary conditions: $b(r)=\exp \left(\frac{1}{2} r M_{-1}\right)$ and

$$
\begin{aligned}
a(t, \varphi)= & \left(M_{1}-M(\varphi) M_{-1}-V(\varphi) V_{-2}\right) \mathrm{d} t \\
& +\left(L_{1}-M(\varphi) L_{-1}-V(\varphi) U_{-2}-L(\varphi) M_{-1}-Z(\varphi) V_{-2}\right) \mathrm{d} \varphi
\end{aligned}
$$

- Spin 3 charges:

$$
Q\left[\varepsilon_{M}, \varepsilon_{L}, \varepsilon_{V}, \varepsilon_{U}\right] \sim \oint\left(\varepsilon_{M}(\varphi) M(\varphi)+\varepsilon_{L}(\varphi) L(\varphi)+\varepsilon_{V}(\varphi) V(\varphi)+\varepsilon_{U}(\varphi) U(\varphi)\right)
$$

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ' 13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel '13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra
- Obtain new type of W-algebra as extension of BMS ("BMW")

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]=} & (n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right]=} & (n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[U_{n}, U_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{192}{c_{M}}(n-m) \Lambda_{n+m} \\
& -\frac{96\left(c_{L}+\frac{44}{5}\right)}{c_{M}^{2}}(n-m) \Theta_{n+m}+\frac{c_{L}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
{\left[U_{n}, V_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}+\frac{96}{c_{M}}(n-m) \Theta_{n+m} \\
& +\frac{c_{M}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
\Lambda_{n}= & \sum_{p}: L_{p} M_{n-p}:-\frac{3}{10}(n+2)(n+3) M_{n} \quad \Theta_{n}=\sum_{p} M_{p} M_{n-p}
\end{aligned}
$$

other commutators as in $\operatorname{isl}(3)$ with $n \in \mathbb{Z}$

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel '13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra
- Obtain new type of W-algebra as extension of BMS ("BMW")

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]=} & (n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right]=} & (n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[U_{n}, U_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{192}{c_{M}}(n-m) \Lambda_{n+m} \\
& -\frac{96\left(c_{L}+\frac{44}{5}\right)}{c_{M}^{2}}(n-m) \Theta_{n+m}+\frac{c_{L}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
{\left[U_{n}, V_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}+\frac{96}{c_{M}}(n-m) \Theta_{n+m} \\
& +\frac{c_{M}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0}
\end{aligned}
$$

- Note quantum shift and poles in central terms!

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel '13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra
- Obtain new type of W-algebra as extension of BMS ("BMW")

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]=} & (n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right]=} & (n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[U_{n}, U_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{192}{c_{M}}(n-m) \Lambda_{n+m} \\
& -\frac{96\left(c_{L}+\frac{44}{5}\right)}{c_{M}^{2}}(n-m) \Theta_{n+m}+\frac{c_{L}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
{\left[U_{n}, V_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}+\frac{96}{c_{M}}(n-m) \Theta_{n+m} \\
& +\frac{c_{M}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0}
\end{aligned}
$$

- Note quantum shift and poles in central terms!
- Analysis generalizes to flat space contractions of other W-algebras

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Limit $c_{M} \rightarrow 0$ requires further contraction: $U_{n} \rightarrow c_{M} U_{n}$

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Limit $c_{M} \rightarrow 0$ requires further contraction: $U_{n} \rightarrow c_{M} U_{n}$ Doubly contracted algebra has unitary representations:

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m} \\
{\left[L_{n}, U_{m}\right] } & =(2 n-m) U_{n+m} \\
{\left[M_{n}, U_{m}\right]=\left[L_{n}, V_{m}\right] } & =(2 n-m) V_{n+m} \\
{\left[U_{n}, U_{m}\right] } & \propto\left[U_{n}, V_{m}\right]=96(n-m) \sum_{p} M_{p} M_{n-p}
\end{aligned}
$$

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Limit $c_{M} \rightarrow 0$ requires further contraction: $U_{n} \rightarrow c_{M} U_{n}$ Doubly contracted algebra has unitary representations:

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m} \\
{\left[L_{n}, U_{m}\right] } & =(2 n-m) U_{n+m} \\
{\left[M_{n}, U_{m}\right]=\left[L_{n}, V_{m}\right] } & =(2 n-m) V_{n+m} \\
{\left[U_{n}, U_{m}\right] } & \propto\left[U_{n}, V_{m}\right]=96(n-m) \sum_{p} M_{p} M_{n-p}
\end{aligned}
$$

Higher spin states decouple and become null states!

Unitarity in flat space

Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Unitarity in flat space
Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Example:
Flat space chiral gravity
Bagchi, Detournay, DG, 1208.1658

Unitarity in flat space
Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Example:

Minimal model holography
Gaberdiel, Gopakumar, 1011.2986, 1207.6697

Unitarity in flat space
Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Example:

Flat space higher spin gravity (Galilean W_{3} algebra)
Afshar, Bagchi, Fareghbal, DG and Rosseel, 1307.4768
Gonzalez, Matulich, Pino and Troncoso, 1307.5651

Unitarity in flat space

Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

> Compatible with "spirit" of various no-go results in higher dimensions!

Unitarity in flat space

Generic flat space W-algebras DG, Riegler, Rosseel '14

1. NO-GO:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Compatible with "spirit" of various no-go results in higher dimensions!

2. YES-GO:

There is (at least) one counter-example, namely a Vasiliev-type of theory, where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...

Unitarity in flat space
Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!

Unitarity in flat space
Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!
- If it exists, this must be its asymptotic symmetry algebra:

$$
\begin{aligned}
{\left[\mathcal{V}_{m}^{i}, \mathcal{V}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{V}_{m+n}^{i+j-2 r}+c_{\mathcal{V}}^{i}(m) \delta^{i j} \delta_{m+n, 0} \\
{\left[\mathcal{V}_{m}^{i}, \mathcal{W}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{W}_{m+n}^{i+j-2 r} \quad\left[\mathcal{W}_{m}^{i}, \mathcal{W}_{n}^{j}\right]=0
\end{aligned}
$$

where

$$
c_{\mathcal{V}}^{i}(m)=\#(i, m) \times c \quad \text { and } \quad c=-\bar{c}
$$

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!
- If it exists, this must be its asymptotic symmetry algebra:

$$
\begin{aligned}
{\left[\mathcal{V}_{m}^{i}, \mathcal{V}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{V}_{m+n}^{i+j-2 r}+c_{\mathcal{V}}^{i}(m) \delta^{i j} \delta_{m+n, 0} \\
{\left[\mathcal{V}_{m}^{i}, \mathcal{W}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{W}_{m+n}^{i+j-2 r} \quad\left[\mathcal{W}_{m}^{i}, \mathcal{W}_{n}^{j}\right]=0
\end{aligned}
$$

where

$$
c_{\mathcal{V}}^{i}(m)=\#(i, m) \times c \quad \text { and } \quad c=-\bar{c}
$$

- Vacuum descendants $\mathcal{W}_{m}^{i}|0\rangle$ are null states for all i and m !

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel ' 14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!
- If it exists, this must be its asymptotic symmetry algebra:

$$
\begin{aligned}
{\left[\mathcal{V}_{m}^{i}, \mathcal{V}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{V}_{m+n}^{i+j-2 r}+c_{\mathcal{V}}^{i}(m) \delta^{i j} \delta_{m+n, 0} \\
{\left[\mathcal{V}_{m}^{i}, \mathcal{W}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{W}_{m+n}^{i+j-2 r} \quad\left[\mathcal{W}_{m}^{i}, \mathcal{W}_{n}^{j}\right]=0
\end{aligned}
$$

where

$$
c_{\mathcal{V}}^{i}(m)=\#(i, m) \times c \quad \text { and } \quad c=-\bar{c}
$$

- Vacuum descendants $\mathcal{W}_{m}^{i}|0\rangle$ are null states for all i and m !
- AdS parent theory: no trace anomaly, but gravitational anomaly (Like in conformal Chern-Simons gravity \rightarrow Vasiliev type analogue?)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!

Line-element with spin-2 and spin-3 chemical potentials:

$$
\begin{gathered}
g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\left(r^{2}\left(\mu_{\mathrm{L}}^{2}-4 \mu_{\mathrm{U}}^{\prime \prime} \mu_{\mathrm{U}}+3 \mu_{\mathrm{U}}^{\prime 2}+4 \mathcal{M} \mu_{\mathrm{U}}^{2}\right)+r g_{u u}^{(r)}+g_{u u}^{(0)}+g_{u u}^{\left(0^{\prime}\right)}\right) \mathrm{d} u^{2}+ \\
\left(r^{2} \mu_{\mathrm{L}}-r \mu_{\mathrm{M}}^{\prime}+\mathcal{N}\left(1+\mu_{\mathrm{M}}\right)+8 \mathcal{Z} \mu_{\mathrm{V}}\right) 2 \mathrm{~d} u \mathrm{~d} \varphi-\left(1+\mu_{\mathrm{M}}\right) 2 \mathrm{~d} r \mathrm{~d} u+r^{2} \mathrm{~d} \varphi^{2} \\
g_{u u}^{(0)}=\mathcal{M}\left(1+\mu_{\mathrm{M}}\right)^{2}+2\left(1+\mu_{\mathrm{M}}\right)\left(\mathcal{N} \mu_{\mathrm{L}}+12 \mathcal{V}_{\mu \mathrm{V}}+16 \mathcal{Z}_{\left.\mu_{\mathrm{U}}\right)}\right. \\
+16 \mathcal{Z} \mu_{\mathrm{L}} \mu_{\mathrm{V}}+\frac{4}{3}\left(\mathcal{M}^{2} \mu_{\mathrm{V}}^{2}+4 \mathcal{M} \mu_{\mathrm{U}} \mu_{\mathrm{V}}+\mathcal{N}^{2} \mu_{\mathrm{U}}^{2}\right)
\end{gathered}
$$

Spin-3 field with same chemical potentials:

$$
\begin{aligned}
& \Phi_{\mu \nu \lambda} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu} \mathrm{d} x^{\lambda}=\Phi_{u u u} \mathrm{~d} u^{3}+\Phi_{r u u} \mathrm{~d} r \mathrm{~d} u^{2}+\Phi_{u u \varphi} \mathrm{~d} u^{2} \mathrm{~d} \varphi-\left(2 \mu_{\mathrm{U}} r^{2}-r \mu_{\mathrm{V}}^{\prime}+2 \mathcal{N} \mu_{\mathrm{V}}\right) \mathrm{d} r \mathrm{~d} u \mathrm{~d} \varphi \\
& \quad+\mu_{\mathrm{V}} \mathrm{~d} r^{2} \mathrm{~d} u-\left(\mu_{\mathrm{U}}^{\prime} r^{3}-\frac{1}{3} r^{2}\left(\mu_{\mathrm{V}}^{\prime \prime}-\mathcal{M} \mu_{\mathrm{V}}+4 \mathcal{N} \mu_{\mathrm{U}}\right)+r \mathcal{N} \mu_{\mathrm{V}}^{\prime}-\mathcal{N}^{2} \mu_{\mathrm{V}}\right) \mathrm{d} u \mathrm{~d} \varphi^{2} \\
& \Phi_{u u u}= r^{2}\left[2\left(1+\mu_{\mathrm{M}}\right) \mu_{\mathrm{U}}\left(\mathcal{M} \mu_{\mathrm{L}}-4 \mathcal{V} \mu_{\mathrm{U}}\right)-\frac{1}{3} \mu_{\mathrm{L}}^{2}\left(\mathcal{M} \mu_{\mathrm{V}}-4 \mathcal{N} \mu_{\mathrm{U}}\right)+16 \mu_{\mathrm{L}} \mu_{\mathrm{U}}\left(\mathcal{V} \mu_{\mathrm{V}}+\mathcal{Z} \mu_{\mathrm{U}}\right)-\frac{4}{3} \mathcal{M} \mu_{\mathrm{U}}^{2}\left(\mathcal{M} \mu_{\mathrm{V}}\right.\right. \\
&+\left.\left.2 \mathcal{N} \mu_{\mathrm{U}}\right)\right]+2 \mathcal{V}\left(1+\mu_{\mathrm{M}}\right)^{3}+\frac{2}{3}\left(1+\mu_{\mathrm{M}}\right)^{2}\left(6 \mathcal{Z} \mu_{\mathrm{L}}+\mathcal{M}^{2} \mu_{\mathrm{V}}+2 \mathcal{M} \mathcal{N} \mu_{\mathrm{U}}\right)+16 \mu_{\mathrm{L}} \mu_{\mathrm{V}}^{2}\left(\mathcal{N} \mathcal{V}-\frac{1}{3} \mathcal{M} \mathcal{Z}\right) \\
&+ \frac{2}{3}\left(1+\mu_{\mathrm{M}}\right)\left(\left(\mathcal{N} \mu_{\mathrm{L}}+16 \mathcal{Z} \mu_{\mathrm{U}}\right)\left(2 \mathcal{M} \mu_{\mathrm{V}}+\mathcal{N} \mu_{\mathrm{U}}\right)+12 \mathcal{M} \mathcal{V} \mu_{\mathrm{V}}^{2}\right)+\frac{64}{3} \mathcal{Z} \mu_{\mathrm{U}} \mu_{\mathrm{V}}\left(\mathcal{N} \mu_{\mathrm{L}}+12 \mathcal{V} \mu_{\mathrm{V}}+12 \mathcal{Z} \mu_{\mathrm{U}}\right) \\
&+\mathcal{N}^{2} \mu_{\mathrm{L}}^{2} \mu_{\mathrm{V}}+64 \mathcal{V}^{2} \mu_{\mathrm{V}}^{3}-\frac{8}{27}\left(\mathcal{M}^{3} \mu_{\mathrm{V}}^{3}-\mathcal{N}^{3} \mu_{\mathrm{U}}^{3}\right)-\frac{4}{9} \mathcal{M} \mathcal{N} \mu_{\mathrm{U}} \mu_{\mathrm{V}}\left(4 \mathcal{M} \mu_{\mathrm{V}}+5 \mathcal{N} \mu_{\mathrm{U}}\right)+\sum_{n=0}^{3} r^{n} \Phi_{u u u}^{\left(r_{u}^{n}\right)}
\end{aligned}
$$

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Adding chemical potentials Gary, DG, Riegler, Rosseel '14

Long story short:

$$
A_{u} \rightarrow A_{u}+\mu
$$

Works nicely in Chern-Simons formulation!
Interesting novel phase transitions of zeroth/first order:

Free energy of four branches of regular solutions as function of temperature for different values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar '12)

Selected open issues

Flat space higher spin holography is a meaningful notion in 3D

Selected open issues

Flat space higher spin holography is a meaningful notion in 3D

Here are selected open issues:

- landscape of all possible phase transitions?

Selected open issues

Flat space higher spin holography is a meaningful notion in 3D

Here are selected open issues:

- landscape of all possible phase transitions?
- existence of flat space chiral higher spin gravity?

Selected open issues

Flat space higher spin holography is a meaningful notion in 3D

Here are selected open issues:

- landscape of all possible phase transitions?
- existence of flat space chiral higher spin gravity?
- other unitary examples?

Selected open issues

Flat space higher spin holography is a meaningful notion in 3D

Here are selected open issues:

- landscape of all possible phase transitions?
- existence of flat space chiral higher spin gravity?
- other unitary examples?
- (holographic) entanglement entropy? (Bagchi, Basu, DG, Riegler '14)

Selected open issues

Flat space higher spin holography is a meaningful notion in 3D

Here are selected open issues:

- landscape of all possible phase transitions?
- existence of flat space chiral higher spin gravity?
- other unitary examples?
- (holographic) entanglement entropy? (Bagchi, Basu, DG, Riegler '14)
- flat space local quantum quench?

Selected open issues

Flat space higher spin holography is a meaningful notion in 3D

Here are selected open issues:

- landscape of all possible phase transitions?
- existence of flat space chiral higher spin gravity?
- other unitary examples?
- (holographic) entanglement entropy? (Bagchi, Basu, DG, Riegler '14)
- flat space local quantum quench?

Flat space higher spin holography provides a new playground Contributes to long-term goal: find how general is holography

Thanks for your attention!

