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General motivations

I Quantum gravity
I Address conceptual issues of quantum gravity

I Black holes (thermodynamics, evaporation, information loss, microstate
counting, entanglement entropy, firewalls, ...)

I String theory (is it the right theory? can there be any alternative? ...)
I Holography

I Holographic principle realized in Nature? (yes/no)

I Quantum gravity via AdS/CFT? (define quantum gravity in AdS by
constructing/postulating dual CFT)

I How general is holography? (non-unitary holography, higher spin
holography, flat space holography, non-AdS holography, ...)

I Applications
I Gauge gravity correspondence (plasmas, condensed matter, ...)
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Specific motivation for 3D

Gravity in 3D is simpler than in higher dimensions
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Specific motivation for flat space higher spin gravity

Massless higher spin theories constrained by no-gos!

I Coleman–Mandula ’67

I Aragone–Deser ’79

I Weinberg–Witten ’80

I recent summary: Bekaert, Boulanger, Sundell ’12

Conclusion: there are no consistent interacting massless higher spin
theories in 4- (or higher-) dimensional flat space

Circumventing no-gos:

I Vasiliev ’87-’90: higher spin theories in (A)dS

I Afshar, Bagchi, Fareghbal, DG, Rosseel ’13; Gonzalez, Matulich,
Pino, Troncoso ’13: flat space higher spin theories in 3d
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Goals of this talk

1. Review general aspects of holography in 3D

2. Discuss flat space holography

3. Generalize to higher spin holography

4. List selected open issues

Address these issues in 3D!
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Gravity in 3D
AdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Simple microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

I Simple checks of Ryu–Takayanagi proposal

Caveat: while there are many string compactifications with AdS3 factor,
applying holography just to AdS3 factor does not capture everything!
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Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
Example: Einstein gravity with Dirichlet boundary conditions

I = − 1

16πGN

∫
d3x
√
|g|
(
R+

2

`2
)

with δg = fixed at the boundary

2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Apply algorithm above to flat space holography in 3D higher spin theories

Goal of this talk:
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ds2 = dρ2 +
(
e2ρ/` γ

(0)
ij + γ

(2)
ij + . . .

)
dxi dxj

with δγ(0) = 0 for ρ→∞
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Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges

Example: Two copies of Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n) δn+m, 0

with Brown–Henneaux central charge

c =
3`

2GN
Reminder: ASA = quotient algebra of asymptotic symmetries by
‘trivial’ asymptotic symmetries with zero canonical charges
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Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA

Example: semi-classical ASA in spin-3 gravity (Henneaux, Rey ’10;
Campoleoni, Pfenninger, Fredenhagen, Theisen ’10)

[Wn, Wm] =
16

5c

∑
p

LpLn+m−p + . . .

quantum ASA

[Wn, Wm] =
16

5c+ 22

∑
p

: LpLn+m−p : + . . .
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6. Study unitary representations of quantum ASA

Example:

0.0 0.2 0.4 0.6 0.8 1.0
Α0

5

10

15

20

25

c

Afshar et al ’12
Discrete set of Newton
constant values compatible
with unitarity
(3D spin-N gravity in
next-to-principal embedding)
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4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Example: Monster CFT in (flat space) chiral gravity
Witten ’07
Li, Song & Strominger ’08
Bagchi, Detournay & DG ’12

Z(q) = J(q) =
1

q
+ (1 + 196883) q +O(q2)

Note: ln 196883 ≈ 12.2 = 4π + quantum corrections
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Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?
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Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?

I Works straightforwardly sometimes, otherwise not

I Example where it works nicely: asymptotic symmetry algebra
I Take linear combinations of Virasoro generators Ln, L̄n

Ln = Ln − L̄−n Mn =
1

`

(
Ln + L̄−n

)
I Make Inönü–Wigner contraction `→∞ on ASA

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Mn, Mm] = 0

I This is nothing but the BMS3 algebra (or GCA2, URCA2, CCA2)!
I Example where it does not work easily: boundary conditions!
I Example where it does not work at all: highest weight conditions!
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Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?

Not in general! Must (also) work intrinsically in flat space!
Interesting example:

I unitarity of flat space quantum gravity

I extrapolate from AdS: should be unitary (?)

I extrapolate from dS: should be non-unitary (?)

I directly in flat space: both options realized, depending on details of
model

Many open issues in flat space holography!
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(Higher spin) gravity as Chern–Simons gauge theory...
...with weird boundary conditions (Achucarro & Townsend ’86; Witten ’88; Bañados ’96)

CS action (for AdS: sl(2)⊕ sl(2)):

SCS =
k

4π

∫
CS(A)− k

4π

∫
CS(Ā)

Variational principle:

δSCS|EOM =
k

4π

∫
Tr
(
A ∧ δA− Ā ∧ δĀ

)
Well-defined for boundary conditions (similarly for Ā)

A+ = 0 or A− = 0 boundary coordinates x±

Example: asymptotically AdS3 (Cartan-version of Brown–Henneaux)

Aρ = L0 Āρ = −L0

A+ = eρ L1 + e−ρ L(x+)L−1 Ā+ = 0

A− = 0 Ā− = −eρ L−1 − e−ρ L̄(x−)L1

Dreibein: e/` ∼ A− Ā, spin-connection: ω ∼ A+ Ā
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İnönü–Wigner contraction of Virasoro (Barnich & Compère ’06)
BMS3 and GCA2 (or rather, URCA2)

I Take two copies of Virasoro, generators Ln, L̄n, central charges c, c̄

I Define superrotations Ln and supertranslations Mn

Ln := Ln − L̄−n Mn := 1
`

(
Ln + L̄−n

)
I Make ultrarelativistic boost, `→∞

[Ln, Lm] = (n−m)Ln+m + cL
1
12 δn+m, 0

[Ln, Mm] = (n−m)Mn+m + cM
1
12 δn+m, 0

[Mn, Mm] = 0

I Is precisely the (centrally extended) BMS3 algebra!
I Central charges:

cL = c− c̄ cM = (c+ c̄)/`

Example TMG (with gravitational CS coupling µ and Newton constant G):

cL =
3

µG
cM =

3

G
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Consequence of ultrarelativistic boost for AdS boundary

AdS-boundary:

Limit `→∞

Flat space boundary:

Null infinity holography!
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Contraction on gravity side

AdS metric (ϕ ∼ ϕ+ 2π):

ds2AdS = d(`ρ)2 − cosh2
( `ρ
`

)
dt2 + `2 sinh2

( `ρ
`

)
dϕ2

Limit `→∞ (r = `ρ):

ds2Flat = dr2 − dt2 + r2 dϕ2 = −du2 − 2 dudr + r2 dϕ2

BTZ metric:

ds2BTZ = −
( r

2

`2
− r2

+

`2
)(r2 − r2−)

r2
dt2+

r2 dr2

( r
2

`2
− r2

+

`2
)(r2 − r2−)

+r2
(

dϕ−
r+
` r−

r2
dt
)2

Limit `→∞ (r̂+ = r+
` = finite):

ds2FSC = r̂2+
(
1− r2

−
r2

)
dt2 − 1

1− r2
−
r2

dr2

r̂2+
+ r2

(
dϕ− r̂+ r−

r2
dt
)2

Shifted-boost orbifold studied by Cornalba & Costa more than decade ago
Describes expanding (contracting) Universe in flat space
Cosmological horizon at r = r−, screening CTCs at r < 0
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Outline

Motivations

Holography basics

Flat space gravity

Flat space higher spin gravity
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Flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel ’13, Gonzalez, Matulich, Pino, Troncoso ’13

I AdS gravity in CS formulation: spin 2 → spin 3 ∼ sl(2)→ sl(3)

I Flat space: similar!

Sflat
CS =

k

4π

∫
CS(A)

with isl(3) connection (ea = “zuvielbein”)

A = eaTa + ωaJa Ta = (Mn, Vm) Ja = (Ln, Um)

I Same type of boundary conditions as for spin 2:

A(r, t, ϕ) = b−1(r)
(

d+a(t, ϕ) + o(1)
)
b(r)

I Flat space boundary conditions: b(r) = exp (12 rM−1) and

a(t, ϕ) =
(
M1 −M(ϕ)M−1 − V (ϕ)V−2

)
dt

+
(
L1 −M(ϕ)L−1 − V (ϕ)U−2 − L(ϕ)M−1 − Z(ϕ)V−2

)
dϕ

I Spin 3 charges:

Q[εM , εL, εV , εU ] ∼
∮ (

εM (ϕ)M(ϕ)+εL(ϕ)L(ϕ)+εV (ϕ)V (ϕ)+εU (ϕ)U(ϕ)
)
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Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ’13

I Do either Brown–Henneaux type of analysis or İnönü–Wigner
contraction of two copies of quantum W3-algebra

I Obtain new type of W -algebra as extension of BMS (“BMW”)

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Un, Um] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m +
192

cM
(n−m)Λn+m

−
96
(
cL+ 44

5

)
c2M

(n−m)Θn+m +
cL
12

n(n2 − 1)(n2 − 4) δn+m, 0

[Un, Vm] = (n−m)(2n2 + 2m2 − nm− 8)Mn+m +
96

cM
(n−m)Θn+m

+
cM
12

n(n2 − 1)(n2 − 4) δn+m, 0

I Note quantum shift and poles in central terms!

I Analysis generalizes to flat space contractions of other W -algebras
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Λn =
∑
p

: LpMn−p : − 3
10

(n+ 2)(n+ 3)Mn Θn =
∑
p

MpMn−p

other commutators as in isl(3) with n ∈ Z

I Note quantum shift and poles in central terms!
I Analysis generalizes to flat space contractions of other W -algebras
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Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:
I Unitarity in GCA requires cM = 0 (see paper for caveats!)

I Non-triviality requires then cL 6= 0
I Generalization to contracted higher spin algebras straightforward
I All of them contain GCA as subalgebra
I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un
Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)
∑
p

MpMn−p

Higher spin states decouple and become null states!
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Unitarity in flat space
Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?
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Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Example:
Flat space chiral gravity
Bagchi, Detournay, DG, 1208.1658

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!
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Unitarity in flat space
Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Example:
Minimal model holography
Gaberdiel, Gopakumar, 1011.2986, 1207.6697

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?
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Unitarity in flat space
Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Example:
Flat space higher spin gravity (Galilean W3 algebra)
Afshar, Bagchi, Fareghbal, DG and Rosseel, 1307.4768
Gonzalez, Matulich, Pino and Troncoso, 1307.5651

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?
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Unitarity in flat space
Flat space W∞-algebra compatible with unitarity DG, Riegler, Rosseel ’14

I We do not know if flat space chiral higher spin gravity exists...

I ...but its existence is at least not ruled out by the no-go result!
I If it exists, this must be its asymptotic symmetry algebra:

[
V im,Vjn

]
=

b i+j2 c∑
r=0

gij2r(m,n)V i+j−2rm+n + ciV(m) δij δm+n,0

[
V im,Wj

n

]
=

b i+j2 c∑
r=0

gij2r(m,n)W i+j−2r
m+n

[
W i
m,Wj

n

]
= 0

where
ciV(m) = #(i, m) × c and c = −c̄

I Vacuum descendants W i
m|0〉 are null states for all i and m!

I AdS parent theory: no trace anomaly, but gravitational anomaly
(Like in conformal Chern–Simons gravity → Vasiliev type analogue?)
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Adding chemical potentials Gary, DG, Riegler, Rosseel ’14

Long story short:

Au → Au + µ

Works nicely in Chern–Simons formulation!
Interesting novel phase transitions of zeroth/first order:
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Free energy of four branches of regular solutions as function of temperature for different
values of higher spin chemical potential ratio (in AdS: see David, Ferlaino, Kumar ’12)
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Long story short:
Au → Au + µ

Works nicely in Chern–Simons formulation!

Interesting novel phase transitions of zeroth/first order:
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Adding chemical potentials Gary, DG, Riegler, Rosseel ’14

Long story short:
Au → Au + µ

Works nicely in Chern–Simons formulation!
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Interesting novel phase transitions of zeroth/first order:
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Selected open issues

Flat space higher spin holography is a meaningful
notion in 3D

Here are selected open issues:

I landscape of all possible phase transitions?

I existence of flat space chiral higher spin gravity?

I other unitary examples?

I (holographic) entanglement entropy? (Bagchi, Basu, DG, Riegler ’14)

I flat space local quantum quench?

Flat space higher spin holography provides a new playground
Contributes to long-term goal: find how general is holography
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Thanks for your attention!

Vladimir Bulatov, M.C.Escher Circle Limit III in a rectangleDaniel Grumiller — Flat space higher spin gravity Flat space higher spin gravity 25/25


	Motivations
	Holography basics
	Flat space gravity
	Flat space higher spin gravity

