Three-dimensional gravity and logarithmic CFT Nordic Network Meeting, Göteborg

Niklas Johansson
Vienna University of Technology

October 222010

Outline

Logarithmic CFT

Lightning review
LCFTs as limits
Gravity duals
Early hints
Candidate theories
Tests of the conjectures
TMG
NMG
GMG
Conclusion

2 of 16

Logarithmic CFT

- LCFTs ([Gurarie '93]) are non-unitary CFTs.

Logarithmic CFT

- LCFTs ([Gurarie '93]) are non-unitary CFTs.
- Useful for describing: systems with quenched disorder.

Logarithmic CFT

- LCFTs ([Gurarie '93]) are non-unitary CFTs.
- Useful for describing: systems with quenched disorder.
- (E.g., spin glasses, quenced random magnets, self-avoiding polymers and percolation.) [Cardy, Gurarie, Ludwig, Tabar...]

Logarithmic CFT

- LCFTs ([Gurarie '93]) are non-unitary CFTs.
- Useful for describing: systems with quenched disorder.
- (E.g., spin glasses, quenced random magnets, self-avoiding polymers and percolation.) [Cardy, Gurarie, Ludwig, Tabar...]
- Challenging to describe!

Logarithmic CFT

- LCFTs ([Gurarie '93]) are non-unitary CFTs.
- Useful for describing: systems with quenched disorder.
- (E.g., spin glasses, quenced random magnets, self-avoiding polymers and percolation.) [Cardy, Gurarie, Ludwig, Tabar...]
- Challenging to describe!
- Defining feature: Two operators \mathcal{O} and $\mathcal{O}^{\log }$, have degenerate conformal weights and form a logarithmic pair:

Logarithmic CFT

- LCFTs ([Gurarie '93]) are non-unitary CFTs.
- Useful for describing: systems with quenched disorder.
- (E.g., spin glasses, quenced random magnets, self-avoiding polymers and percolation.) [Cardy, Gurarie, Ludwig, Tabar...]
- Challenging to describe!
- Defining feature: Two operators \mathcal{O} and $\mathcal{O}^{\log }$, have degenerate conformal weights and form a logarithmic pair:

$$
H\binom{\mathcal{O}^{\log }}{\mathcal{O}}=\left(\begin{array}{cc}
E & 1 \\
0 & E
\end{array}\right)\binom{\mathcal{O}^{\log }}{\mathcal{O}} \quad J\binom{\mathcal{O}^{\log }}{\mathcal{O}}=\left(\begin{array}{ll}
j & 0 \\
0 & j
\end{array}\right)\binom{\mathcal{O}^{\log }}{\mathcal{O}}
$$

Logarithmic CFT

- LCFTs ([Gurarie '93]) are non-unitary CFTs.
- Useful for describing: systems with quenched disorder.
- (E.g., spin glasses, quenced random magnets, self-avoiding polymers and percolation.) [Cardy, Gurarie, Ludwi, Tabar...]
- Challenging to describe!
- Defining feature: Two operators \mathcal{O} and $\mathcal{O}^{\log }$, have degenerate conformal weights and form a logarithmic pair:

$$
H\binom{\mathcal{O}^{\log }}{\mathcal{O}}=\left(\begin{array}{ll}
E & 1 \\
0 & E
\end{array}\right)\binom{\mathcal{O}^{\log }}{\mathcal{O}} \quad J\binom{\mathcal{O}^{\log }}{\mathcal{O}}=\left(\begin{array}{ll}
j & 0 \\
0 & j
\end{array}\right)\binom{\mathcal{O}^{\log }}{\mathcal{O}}
$$

- Reviews: [Flohr] hep-th/0111228, [Gaberdiel hep-th/0111260

Logarithmic CFTs

...correlators

- There are logs in the correlators!

Logarithmic CFTs

...correlators

- There are logs in the correlators!

$$
\begin{aligned}
& \langle\mathcal{O}(z) \mathcal{O}(0)\rangle=\frac{0}{2 z^{2 h}} \\
& \left\langle\mathcal{O}(z) \mathcal{O}^{\log }(0,0)\right\rangle=\frac{b}{2 z^{2 h}} \\
& \left\langle\mathcal{O}^{\log }(z, \bar{z}) \mathcal{O}^{\log }(0,0)\right\rangle=-\frac{b \ln \left(m_{L}^{2}|z|^{2}\right)}{z^{2 h}}
\end{aligned}
$$

Logarithmic CFTs

...correlators

- There are logs in the correlators!
- One state is zero norm!

$$
\begin{aligned}
& \langle\mathcal{O}(z) \mathcal{O}(0)\rangle=\frac{0}{2 z^{2 h}} \\
& \left\langle\mathcal{O}(z) \mathcal{O}^{\log }(0,0)\right\rangle=\frac{b}{2 z^{2 h}} \\
& \left\langle\mathcal{O}^{\log }(z, \bar{z}) \mathcal{O}^{\log }(0,0)\right\rangle=-\frac{b \ln \left(m_{L}^{2}|z|^{2}\right)}{z^{2 h}}
\end{aligned}
$$

Logarithmic CFTs

...correlators

- There are logs in the correlators!
- One state is zero norm!
- \mathcal{O} can be $\mathcal{O}^{L} \equiv T_{z z}(z)$. Then $c_{L}=0$.

$$
\begin{aligned}
& \langle\mathcal{O}(z) \mathcal{O}(0)\rangle=\frac{0}{2 z^{2 h}} \\
& \left\langle\mathcal{O}(z) \mathcal{O}^{\log }(0,0)\right\rangle=\frac{b}{2 z^{2 h}} \\
& \left\langle\mathcal{O}^{\log }(z, \bar{z}) \mathcal{O}^{\log }(0,0)\right\rangle=-\frac{b \ln \left(m_{L}^{2}|z|^{2}\right)}{z^{2 h}}
\end{aligned}
$$

Logarithmic CFTs

...as limits

- Consider a 1-parameter (ϵ) family of CFTs.

Logarithmic CFTs

...as limits

- Consider a 1-parameter (ϵ) family of CFTs.
- Suppose two operators $\mathcal{O}^{A / B}(\epsilon)$ coincide at $\epsilon=0$: $\mathcal{O}^{A}(0)=\mathcal{O}^{B}(0)$.

Logarithmic CFTs

...as limits

- Consider a 1-parameter (ϵ) family of CFTs.
- Suppose two operators $\mathcal{O}^{A / B}(\epsilon)$ coincide at $\epsilon=0$: $\mathcal{O}^{A}(0)=\mathcal{O}^{B}(0)$.
- The weights satisfy $\Delta_{A B}=h^{A}(\epsilon)-h^{B}(\epsilon)=\epsilon$.

Logarithmic CFTs

...as limits

- Consider a 1-parameter (ϵ) family of CFTs.
- Suppose two operators $\mathcal{O}^{A / B}(\epsilon)$ coincide at $\epsilon=0$: $\mathcal{O}^{A}(0)=\mathcal{O}^{B}(0)$.
- The weights satisfy $\Delta_{A B}=h^{A}(\epsilon)-h^{B}(\epsilon)=\epsilon$.

$$
\left\langle\mathcal{O}^{\prime}(z) \mathcal{O}^{J}(0,0)\right\rangle=\frac{\delta^{I J} c_{l}(\epsilon)}{2 z^{2 h^{\prime}(\epsilon)}}
$$

Logarithmic CFTs

...as limits

- Consider a 1-parameter (ϵ) family of CFTs.
- Suppose two operators $\mathcal{O}^{A / B}(\epsilon)$ coincide at $\epsilon=0$: $\mathcal{O}^{A}(0)=\mathcal{O}^{B}(0)$.
- The weights satisfy $\Delta_{A B}=h^{A}(\epsilon)-h^{B}(\epsilon)=\epsilon$.

$$
\left\langle\mathcal{O}^{\prime}(z) \mathcal{O}^{J}(0,0)\right\rangle=\frac{\delta^{I J} c_{l}(\epsilon)}{2 z^{2 h^{\prime}(\epsilon)}}
$$

- If the c_{I} vanish as $c_{A} \sim B \epsilon$ and $c_{B} \sim-B \epsilon$ we can define

Logarithmic CFTs

...as limits

- Consider a 1-parameter (ϵ) family of CFTs.
- Suppose two operators $\mathcal{O}^{A / B}(\epsilon)$ coincide at $\epsilon=0$: $\mathcal{O}^{A}(0)=\mathcal{O}^{B}(0)$.
- The weights satisfy $\Delta_{A B}=h^{A}(\epsilon)-h^{B}(\epsilon)=\epsilon$.

$$
\left\langle\mathcal{O}^{\prime}(z) \mathcal{O}^{J}(0,0)\right\rangle=\frac{\delta^{I J} c_{l}(\epsilon)}{2 z^{2 h^{\prime}(\epsilon)}}
$$

- If the c_{l} vanish as $c_{A} \sim B \epsilon$ and $c_{B} \sim-B \epsilon$ we can define

$$
\mathcal{O}^{\log } \equiv \lim _{\Delta_{A B} \rightarrow 0} \frac{\mathcal{O}^{A}-\mathcal{O}^{B}}{\Delta_{A B}}
$$

Logarithmic CFTs

...as limits

- $\left.\mathcal{O}^{A}\right|_{\epsilon=0}=\left.\mathcal{O}^{B}\right|_{\epsilon=0}$ and $\Delta_{A B}=h^{A}(\epsilon)-h^{B}(\epsilon)$.
- The c_{l} vanish as $c_{A} \sim B \Delta_{A B}$ and $c_{B} \sim-B \Delta_{A B}$

$$
\mathcal{O}^{\log } \equiv \lim _{\Delta_{A B} \rightarrow 0} \frac{\mathcal{O}^{A}-\mathcal{O}^{B}}{\Delta_{A B}}
$$

- In the limit we get the non-zero correlators

$$
\begin{aligned}
& \left\langle\mathcal{O}^{A}(z) \mathcal{O}^{\log }(0,0)\right\rangle=\frac{B}{2 z^{2 h(0)}} \\
& \left\langle\mathcal{O}^{\log }(z, \bar{z}) \mathcal{O}^{\log }(0,0)\right\rangle=-\frac{B \ln \left(m_{L}^{2}|z|^{2}\right)}{z^{2 h(0)}}
\end{aligned}
$$

Logarithmic CFTs

...as limits

- $\left.\mathcal{O}^{A}\right|_{\epsilon=0}=\left.\mathcal{O}^{B}\right|_{\epsilon=0}$ and $\Delta_{A B}=h^{A}(\epsilon)-h^{B}(\epsilon)$.
- The c_{l} vanish as $c_{A} \sim B \Delta_{A B}$ and $c_{B} \sim-B \Delta_{A B}$

$$
\mathcal{O}^{\log } \equiv \lim _{\Delta_{A B} \rightarrow 0} \frac{\mathcal{O}^{A}-\mathcal{O}^{B}}{\Delta_{A B}}
$$

- In the limit we get the non-zero correlators

$$
\begin{aligned}
& \left\langle\mathcal{O}^{A}(z) \mathcal{O}^{\log }(0,0)\right\rangle=\frac{B}{2 z^{2 h(0)}} \\
& \left\langle\mathcal{O}^{\log }(z, \bar{z}) \mathcal{O}^{\log }(0,0)\right\rangle=-\frac{B \ln \left(m_{L}^{2}|z|^{2}\right)}{z^{2 h(0)}}
\end{aligned}
$$

- Like an LCFT!

6 of 16

Gravity duals to LCFTs

...early hints

- Early '08, Li, Song and Strominger studied a 3-dimensional gravity theory ([Deser, Jackiw, Templeton '82])

Gravity duals to LCFTs

...early hints

- Early '08, Li, Song and Strominger studied a 3-dimensional gravity theory ([Deser, Jackiv, Templeton '82])

$$
S_{\mathrm{TMG}}=S_{\mathrm{EH}}+\frac{1}{\ell^{2}} S_{\mathrm{CC}}+\frac{1}{\mu} S_{\mathrm{CS}}
$$

Gravity duals to LCFTs

...early hints

- Early '08, Li, Song and Strominger studied a 3-dimensional gravity theory ([Deser, Jackiv, Templeton '82])

$$
S_{\mathrm{TMG}}=S_{\mathrm{EH}}+\frac{1}{\ell^{2}} S_{\mathrm{CC}}+\frac{1}{\mu} S_{\mathrm{CS}}
$$

- Linearized around $\mathrm{AdS}_{3}: g_{\mu \nu}=g_{\mu \nu}^{\mathrm{AdS}}+\operatorname{Re}\left(\psi_{\mu \nu}\right)$

Gravity duals to LCFTs

...early hints

- Early '08, Li, Song and Strominger studied a 3-dimensional gravity theory ([Deser, Jackiv, Templeton '82])

$$
S_{\mathrm{TMG}}=S_{\mathrm{EH}}+\frac{1}{\ell^{2}} S_{\mathrm{CC}}+\frac{1}{\mu} S_{\mathrm{CS}}
$$

- Linearized around $\mathrm{AdS}_{3}: g_{\mu \nu}=g_{\mu \nu}^{\mathrm{AdS}}+\operatorname{Re}\left(\psi_{\mu \nu}\right)$

$$
\left(D^{L} D^{R} D^{m} \psi\right)_{\mu \nu}=0
$$

Gravity duals to LCFTs

...early hints

- Early '08, Li, Song and Strominger studied a 3-dimensional gravity theory ([Deser, Jackiv, Templeton '82])

$$
S_{\mathrm{TMG}}=S_{\mathrm{EH}}+\frac{1}{\ell^{2}} S_{\mathrm{CC}}+\frac{1}{\mu} S_{\mathrm{CS}}
$$

- Linearized around $\mathrm{AdS}_{3}: g_{\mu \nu}=g_{\mu \nu}^{\mathrm{AdS}}+\operatorname{Re}\left(\psi_{\mu \nu}\right)$

$$
\left(D^{L} D^{R} D^{m} \psi\right)_{\mu \nu}=0
$$

with

$$
D^{L / R}=\not \partial \pm \frac{1}{\ell} \quad D^{m}=\not \partial+\mu
$$

$D^{m} \psi^{m}=0$ is a massive graviton. $\psi^{L / R}$ are "pure gauge" $\sim T_{z z} / T_{\bar{z} \bar{z}}$.

Gravity duals to LCFTs

...early hints

- At the tuning $\mu \ell=1$

Gravity duals to LCFTs

...early hints

- At the tuning $\mu \ell=1$
- $D^{L}=D^{m} \Longrightarrow \psi^{L}=\psi^{m}$
- $\left\langle\psi^{L} \psi^{L}\right\rangle \sim c_{L} \rightarrow 0$

Gravity duals to LCFTs

...early hints

- At the tuning $\mu \ell=1$
- $D^{L}=D^{m} \Longrightarrow \psi^{L}=\psi^{m}$
- $\left\langle\psi^{L} \psi^{L}\right\rangle \sim c_{L} \rightarrow 0$
- LSS conjectured: $\psi^{L}=\psi^{m}$ pure gauge! Chiral, unitary CFT dual!

Gravity duals to LCFTs

...early hints

- At the tuning $\mu \ell=1$
- $D^{L}=D^{m} \Longrightarrow \psi^{L}=\psi^{m}$
- $\left\langle\psi^{L} \psi^{L}\right\rangle \sim c_{L} \rightarrow 0$
- LSS conjectured: $\psi^{L}=\psi^{m}$ pure gauge! Chiral, unitary CFT dual!

Gravity duals to LCFTs

...early hints

- At the tuning $\mu \ell=1$
- $D^{L}=D^{m} \Longrightarrow \psi^{L}=\psi^{m}$
- $\left\langle\psi^{L} \psi^{L}\right\rangle \sim c_{L} \rightarrow 0$
- LSS conjectured: $\psi^{L}=\psi^{m}$ pure gauge! Chiral, unitary CFT dual!
- The construction [Gumiller, Nu '08]

$$
\psi^{\log }=\lim _{\mu \ell \rightarrow 1} \frac{\psi^{m}-\psi^{L}}{\mu \ell-1} \Longrightarrow
$$

Gravity duals to LCFTs

...early hints

- At the tuning $\mu \ell=1$
- $D^{L}=D^{m} \Longrightarrow \psi^{L}=\psi^{m}$
- $\left\langle\psi^{L} \psi^{L}\right\rangle \sim c_{L} \rightarrow 0$
- LSS conjectured: $\psi^{L}=\psi^{m}$ pure gauge! Chiral, unitary CFT dual!
- The construction [Gumiller, Nu '08]

$$
\psi^{\log }=\lim _{\mu \ell \rightarrow 1} \frac{\psi^{m}-\psi^{L}}{\mu \ell-1} \Longrightarrow
$$

Gravity duals to LCFTs

...early hints

- At the tuning $\mu \ell=1$

$$
\begin{aligned}
& \circ D^{L}=D^{m} \Longrightarrow \psi^{L}=\psi^{m} \\
& \circ\left\langle\psi^{L} \psi^{L}\right\rangle \sim c_{L} \rightarrow 0
\end{aligned}
$$

- LSS conjectured: $\psi^{L}=\psi^{m}$ pure gauge! Chiral, unitary CFT dual!
- The construction [Grumiller, NJ '08]

$$
\begin{gathered}
\psi^{\log }=\lim _{\mu \ell \rightarrow 1} \frac{\psi^{m}-\psi^{L}}{\mu \ell-1} \Longrightarrow \\
H\binom{\psi^{\log }}{\mathcal{O}}=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)\binom{\psi^{\log }}{\psi^{L}} \quad J\binom{\psi^{\log }}{\psi^{L}}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\binom{\psi^{\log }}{\psi^{L}}
\end{gathered}
$$

Gravity duals to LCFTs

...early hints

- At the tuning $\mu \ell=1$

$$
\begin{aligned}
& \circ D^{L}=D^{m} \Longrightarrow \psi^{L}=\psi^{m} \\
& \circ\left\langle\psi^{L} \psi^{L}\right\rangle \sim c_{L} \rightarrow 0
\end{aligned}
$$

- LSS conjectured: $\psi^{L}=\psi^{m}$ pure gauge! Chiral, unitary CFT dual!
- The construction [Grumiller, NJ '08]

$$
\begin{gathered}
\psi^{\log }=\lim _{\mu \ell \rightarrow 1} \frac{\psi^{m}-\psi^{L}}{\mu \ell-1} \Longrightarrow \\
H\binom{\psi^{\log }}{\mathcal{O}}=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)\binom{\psi^{\log }}{\psi^{L}} \quad J\binom{\psi^{\log }}{\psi^{L}}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\binom{\psi^{\log }}{\psi^{L}}
\end{gathered}
$$

- Conjecture: $\mu \ell=1$ is dual to an LCFT!

Gravity duals to LCFTs

...candidate theories

- Note that to have a \log partner to $T_{z z}$ (many applications), a metric mode must degenerate. Higher curvature theories!
- Many interesting in 3d!

Gravity duals to LCFTs

...candidate theories

- Note that to have a log partner to $T_{z z}$ (many applications), a metric mode must degenerate. Higher curvature theories!
- Many interesting in 3d!
- New Massive Gravity, [Bergshoeff, Hohm, Townsend '09]

$$
S_{\mathrm{NMG}}=\frac{1}{\kappa^{2}} \int d^{3} x \sqrt{-g}\left[\sigma R+\frac{1}{m^{2}}\left(R^{\mu \nu} R_{\mu \nu}-\frac{3}{8} R^{2}\right)-2 \lambda m^{2}\right]
$$

Gravity duals to LCFTs

...candidate theories

- Note that to have a log partner to $T_{z z}$ (many applications), a metric mode must degenerate. Higher curvature theories!
- Many interesting in 3d!
- New Massive Gravity, [Berghoeff, Hohm, Townsend '09]

$$
S_{\mathrm{NMG}}=\frac{1}{\kappa^{2}} \int d^{3} \times \sqrt{-g}\left[\sigma R+\frac{1}{m^{2}}\left(R^{\mu \nu} R_{\mu \nu}-\frac{3}{8} R^{2}\right)-2 \lambda m^{2}\right]
$$

- Add $\frac{1}{\mu} S_{C S}$: Generalised Massive Gravity. Around AdS_{3} :

$$
\left(D^{L} D^{R} D^{m_{1}} D^{m_{2}} \psi\right)_{\mu \nu}=0 \quad m_{1,2} \ell=\frac{m^{2} \ell^{2}}{2 \mu \ell} \pm \sqrt{\frac{1}{2}-\sigma m^{2} \ell^{2}+\frac{m^{4} \ell^{4}}{4 \mu^{2} \ell^{2}}} .
$$

GMG parameter space

- $D^{m_{1}}=D^{L}$:
$T_{z z}$ has log-partner!
- $D^{m_{1}}=D^{m_{2}}$:
\mathcal{O}^{M} has log-partner!
- $D^{m_{1}}=D^{m_{2}}=D^{L}$:

Rank 3 Jordan cell!

- $c_{L}=c_{R}=0$: log-NMG Both $T_{z z}$ and $T_{\bar{z} \bar{z}}$ logged!
- PMG! $c_{L}=c_{R} \neq 0$ Enhanced gauge symmetry!

GMG parameter space

- $D^{m_{1}}=D^{L}$:
$T_{z z}$ has log-partner!
- $D^{m_{1}}=D^{m_{2}}$:
\mathcal{O}^{M} has log-partner!
- $D^{m_{1}}=D^{m_{2}}=D^{L}$:

Rank 3 Jordan cell!

- $c_{L}=c_{R}=0$: log-NMG Both $T_{z z}$ and $T_{\bar{z} \bar{z}}$ logged!
- PMG! $c_{L}=c_{R} \neq 0$ Enhanced gauge symmetry!

GMG parameter space

- $D^{m_{1}}=D^{L}$:
$T_{z z}$ has log-partner!
- $D^{m_{1}}=D^{m_{2}}$:
\mathcal{O}^{M} has log-partner!
- $D^{m_{1}}=D^{m_{2}}=D^{L}$:

Rank 3 Jordan cell!

- $c_{L}=c_{R}=0$: log-NMG Both $T_{z z}$ and $T_{\bar{z} \bar{z}}$ logged!
- PMG! $c_{L}=c_{R} \neq 0$ Enhanced gauge symmetry!

GMG parameter space

- $D^{m_{1}}=D^{L}$:
$T_{z z}$ has log-partner!
- $D^{m_{1}}=D^{m_{2}}$:
\mathcal{O}^{M} has log-partner!
- $D^{m_{1}}=D^{m_{2}}=D^{L}$:

Rank 3 Jordan cell!

- $c_{L}=c_{R}=0$: log-NMG Both $T_{z z}$ and $T_{\bar{z} \bar{z}}$ logged!
- PMG! $c_{L}=c_{R} \neq 0$ Enhanced gauge symmetry!

GMG parameter space

- $D^{m_{1}}=D^{L}$:
$T_{z z}$ has log-partner!
- $D^{m_{1}}=D^{m_{2}}$:
\mathcal{O}^{M} has log-partner!
- $D^{m_{1}}=D^{m_{2}}=D^{L}$:

Rank 3 Jordan cell!

- $c_{L}=c_{R}=0$: log-NMG Both $T_{z z}$ and $T_{\bar{z} \bar{z}}$ logged!
- PMG! $c_{L}=c_{R} \neq 0$ Enhanced gauge symmetry!

Test of the conjectures

...TMG

- $c_{L}=\frac{3 \ell}{2 G}(1-1 / \mu \ell) \rightarrow 0$ and $\psi^{m} \rightarrow \psi^{L}$ [Li, Song, Strominger '08]

Test of the conjectures

...TMG

- $c_{L}=\frac{3 \ell}{2 G}(1-1 / \mu \ell) \rightarrow 0$ and $\psi^{m} \rightarrow \psi^{L}$ [Li, Song, Strominger '08]
- $\psi^{\log }$ is a valid solution. Jordan block! [Grumiller, NJ '08]

Test of the conjectures

...TMG

- $c_{L}=\frac{3 \ell}{2 G}(1-1 / \mu \ell) \rightarrow 0$ and $\psi^{m} \rightarrow \psi^{L}{ }_{[L i, S o n g, ~ S t r o m i n g e r ~ ' 08] ~}$
- $\psi^{\log }$ is a valid solution. Jordan block! [Grumiller, $\mathrm{NJ}{ }^{\text {' } 08]}$
- $\psi^{\log }=$ propagating dof also nonlinearly. [Grumiller, Jackiv, NJ ${ }^{\text {'08] }}$ [Carlip $\left.{ }^{\circ} 08\right]$

Test of the conjectures

...TMG

- $c_{L}=\frac{3 \ell}{2 G}(1-1 / \mu \ell) \rightarrow 0$ and $\psi^{m} \rightarrow \psi^{L}{ }_{[L i, ~ S o n g, ~ S t r o m i n g e r ~ ' 08] ~}$
- $\psi^{\log }$ is a valid solution. Jordan block! [Grumiller, $\mathrm{NJ}{ }^{\text {' } 08]}$
- $\psi^{\log }=$ propagating dof also nonlinearly. [Grumiller, Jackiv, NJ ${ }^{\text {'08] }}$ [Cartip ${ }^{\circ} 08$]
- \exists consistent BCs for $\psi^{\log }$. $\mathrm{ASG}=$ Virasoro ${ }^{2}$. [Grumiller, $\left.\mathrm{NJ}{ }^{\circ} 08\right]$

Test of the conjectures

...TMG

- $c_{L}=\frac{3 \ell}{2 G}(1-1 / \mu \ell) \rightarrow 0$ and $\psi^{m} \rightarrow \psi^{L}$ [Li, Song, Strominger '08]
- $\psi^{\log }$ is a valid solution. Jordan block! [Grumiller, NJ ${ }^{\circ}{ }^{08]}$
- $\psi^{\log }=$ propagating dof also nonlinearly. [Grumiller, Jackiv, NJ ${ }^{\text {'08] }}$ [Cartip ${ }^{108]}$

- Correlators!

$$
\left\langle\psi^{\log } \psi^{\log }\right\rangle=\delta^{(2)} S_{\mathrm{grav}}\left(\psi^{\log }, \psi^{\log }\right)=-\frac{b \ln \left(m_{L}^{2}|z|^{2}\right)}{z^{2 h}}
$$

The 'new anomaly' $b=-\frac{3 \ell}{G}$. [Skenderis, Taylor, v Rees '09] [Grumiller, Sachs '09]

Test of the conjectures

...TMG

- $c_{L}=\frac{3 \ell}{2 G}(1-1 / \mu \ell) \rightarrow 0$ and $\psi^{m} \rightarrow \psi^{L}$ [Li, Song, Strominger '08]
- $\psi^{\log }$ is a valid solution. Jordan block! [Grumiller, $\mathrm{NJ}{ }^{\text {' } 08]}$
- $\psi^{\log }=$ propagating dof also nonlinearly. [Grumiller, Jackiv, NJ ${ }^{\prime} 08$ [Carlip '08]

- Correlators!

$$
\left\langle\psi^{\log } \psi^{\log }\right\rangle=\delta^{(2)} S_{\mathrm{grav}}\left(\psi^{\log }, \psi^{\log }\right)=-\frac{b \ln \left(m_{L}^{2}|z|^{2}\right)}{z^{2 h}}
$$

The 'new anomaly' $b=-\frac{3 \ell}{G}$. [Skenderis, Taylor, v Rees '09] [Grumiller, Sachs '09]

- 3-point correlator also match! [Grumiler, Sachs '00]

Test of the conjectures
 ...TMG

- $c_{L}=\frac{3 \ell}{2 G}(1-1 / \mu \ell) \rightarrow 0$ and $\psi^{m} \rightarrow \psi^{L}{ }_{[L i, ~ S o n g, ~ S t r o m i n g e r ~ ' 08] ~}$
- $\psi^{\log }$ is a valid solution. Jordan block! [Grumiller, NJ ${ }^{\circ}{ }^{08]}$
- $\psi^{\log }=$ propagating dof also nonlinearly. [Grumiller, Jackiv, NJ ${ }^{\prime} 08$ [Carlip '08]
- \exists consistent BCs for $\psi^{\log }$. $\mathrm{ASG}=$ Virasoro ${ }^{2}$. [Grumiller, ws ${ }^{\text {'08] }}$
- Correlators!

$$
\left\langle\psi^{\log } \psi^{\log }\right\rangle=\delta^{(2)} S_{\mathrm{grav}}\left(\psi^{\log }, \psi^{\log }\right)=-\frac{b \ln \left(m_{L}^{2}|z|^{2}\right)}{z^{2 h}}
$$

The 'new anomaly' $b=-\frac{3 \ell}{G}$. [Skenderis, Taylor, v Rees '09] [Grumiller, Sachs '09]

- 3-point correlator also match! [Grumiler, Sachs '00]
- 1-loop partition function consistent with LCFT. [Gaberdiel, Grumiller, Sachs '10]

GMG parameter space

- $D^{m_{1}}=D^{L}$:
$T_{z z}$ has log-partner!
- $D^{m_{1}}=D^{m_{2}}$:
\mathcal{O}^{M} has log-partner!
- $D^{m_{1}}=D^{m_{2}}=D^{L}$:

Rank 3 Jordan cell!

- $c_{L}=c_{R}=0$: log-NMG Both $T_{z z}$ and $T_{\bar{z} \bar{z}}$ logged!
- PMG! $c_{L}=c_{R} \neq 0$ Enhanced gauge symmetry!

GMG parameter space

- $D^{m_{1}}=D^{L}$:
$T_{z z}$ has log-partner!
- $D^{m_{1}}=D^{m_{2}}$:
\mathcal{O}^{M} has log-partner!
- $D^{m_{1}}=D^{m_{2}}=D^{L}$:

Rank 3 Jordan cell!

- $c_{L}=c_{R}=0$: log-NMG Both $T_{z z}$ and $T_{\bar{z} \bar{z}}$ logged!
- PMG! $c_{L}=c_{R} \neq 0$ Enhanced gauge symmetry!

Test of the conjectures

- Two limits: $\psi^{m_{1} / m_{2}} \rightarrow \psi^{L / R}$ or $\psi^{m_{1}} \rightarrow \psi^{m_{2}} \rightarrow \psi^{0}$
- $C_{L / R}=\frac{3 \ell}{2 G}\left(\sigma+\frac{1}{2 m^{2} \ell^{2}}\right) \rightarrow 0$. [Bergshoeff, Hohm, Townsend '09]

Test of the conjectures

- Two limits: $\psi^{m_{1} / m_{2}} \rightarrow \psi^{L / R}$ or $\psi^{m_{1}} \rightarrow \psi^{m_{2}} \rightarrow \psi^{0}$
- $C_{L / R}=\frac{3 \ell}{2 G}\left(\sigma+\frac{1}{2 m^{2} \ell^{2}}\right) \rightarrow 0$. [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} \rightarrow \psi^{L / R}, \psi^{\log }$ is a valid solution. Jordan block! [Liu, Sun 'o9]

Test of the conjectures

- Two limits: $\psi^{m_{1} / m_{2}} \rightarrow \psi^{L / R}$ or $\psi^{m_{1}} \rightarrow \psi^{m_{2}} \rightarrow \psi^{0}$
- $C_{L / R}=\frac{3 \ell}{2 G}\left(\sigma+\frac{1}{2 m^{2} \ell^{2}}\right) \rightarrow 0$. [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} \rightarrow \psi^{L / R}, \psi^{\log }$ is a valid solution. Jordan block! [Liu, Sun 'op]
- $\psi^{\log }=$ propagating dof also nonlinearly. [Blagojevié, Cvetković ' 10]

Test of the conjectures

...NMG

- Two limits: $\psi^{m_{1} / m_{2}} \rightarrow \psi^{L / R}$ or $\psi^{m_{1}} \rightarrow \psi^{m_{2}} \rightarrow \psi^{0}$
- $C_{L / R}=\frac{3 \ell}{2 G}\left(\sigma+\frac{1}{2 m^{2} \ell^{2}}\right) \rightarrow 0$. [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} \rightarrow \psi^{L / R}, \psi^{\log }$ is a valid solution. Jordan block! [Liu, Sun 'oo]
- $\psi^{\log }=$ propagating dof also nonlinearly. [Blagojevié, Cvetković ' 10]
- \exists consistent BCs for ψ^{log}. ASG $=$ Virasoro 2. [Liu, Sun '00]

Test of the conjectures

...NMG

- Two limits: $\psi^{m_{1} / m_{2}} \rightarrow \psi^{L / R}$ or $\psi^{m_{1}} \rightarrow \psi^{m_{2}} \rightarrow \psi^{0}$
- $C_{L / R}=\frac{3 \ell}{2 G}\left(\sigma+\frac{1}{2 m^{2} \ell^{2}}\right) \rightarrow 0$. [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} \rightarrow \psi^{L / R}, \psi^{\log }$ is a valid solution. Jordan block! [Liu, Sun 'o9]
- $\psi^{\log }=$ propagating dof also nonlinearly. [Blagojevié, Cvetković ' 10]
- \exists consistent BCs for $\psi^{\log }$. ASG $=$ Virasoro ${ }^{2}$. [Liu, Sun '09]
- 2-point correlators match! [Grumiller, Hohm '00], [Alishahiha, Nasen '10]

Test of the conjectures

...NMG

- Two limits: $\psi^{m_{1} / m_{2}} \rightarrow \psi^{L / R}$ or $\psi^{m_{1}} \rightarrow \psi^{m_{2}} \rightarrow \psi^{0}$
- $C_{L / R}=\frac{3 \ell}{2 G}\left(\sigma+\frac{1}{2 m^{2} \ell^{2}}\right) \rightarrow 0$. [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} \rightarrow \psi^{L / R}, \psi^{\log }$ is a valid solution. Jordan block! [Liu, Sun 'o9]
- $\psi^{\log }=$ propagating dof also nonlinearly. [Blagojevié, Cvetković ' 10]
- \exists consistent BCs for $\psi^{\text {log }}$. ASG $=$ Virasoro 2. [Liu, Sun '09]
- 2-point correlators match! [Grumiller, Hohm '00], [Alishahiha, Nasen '10]
- $c_{L / R} \neq 0!\left\langle\psi^{m_{1}} \psi^{m_{1}}\right\rangle \sim-\left\langle\psi^{m_{2}} \psi^{m_{2}}\right\rangle \sim \pm c \epsilon$. Jordan block, new (consistent) BCs! [Oliva, Tempo, Troncoso '09]

Test of the conjectures

...NMG

- Two limits: $\psi^{m_{1} / m_{2}} \rightarrow \psi^{L / R}$ or $\psi^{m_{1}} \rightarrow \psi^{m_{2}} \rightarrow \psi^{0}$
- $C_{L / R}=\frac{3 \ell}{2 G}\left(\sigma+\frac{1}{2 m^{2} \ell^{2}}\right) \rightarrow 0$. [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} \rightarrow \psi^{L / R}, \psi^{\log }$ is a valid solution. Jordan block! [Liu, Sun 'oo]
- $\psi^{\log }=$ propagating dof also nonlinearly. [Blagojevié, Cvetković ' 10]
- \exists consistent BCs for $\psi^{\text {log }}$. ASG $=$ Virasoro ${ }^{2}$. [Liu, Sun '09]
- 2-point correlators match! [Grumiller, Hohm '00], [Alishahiha, Nasen '10]
- $c_{L / R} \neq 0!\left\langle\psi^{m_{1}} \psi^{m_{1}}\right\rangle \sim-\left\langle\psi^{m_{2}} \psi^{m_{2}}\right\rangle \sim \pm c \epsilon$. Jordan block, new (consistent) BCs! [Oliva, Tempo, Troncoso '09]
- Actually this theory has many interesting features already logless.
[Bergshoeff, Hohm, Townsend '09]

Test of the conjectures

...NMG

- Two limits: $\psi^{m_{1} / m_{2}} \rightarrow \psi^{L / R}$ or $\psi^{m_{1}} \rightarrow \psi^{m_{2}} \rightarrow \psi^{0}$
- $C_{L / R}=\frac{3 \ell}{2 G}\left(\sigma+\frac{1}{2 m^{2} \ell^{2}}\right) \rightarrow 0$. [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} \rightarrow \psi^{L / R}, \psi^{\log }$ is a valid solution. Jordan block! [Liu, Sun 'oo]
- $\psi^{\log }=$ propagating dof also nonlinearly. [Blagojevié, Cvetković ' 10]
- \exists consistent BCs for $\psi^{\text {log }}$. ASG $=$ Virasoro ${ }^{2}$. [Liu, Sun '09]
- 2-point correlators match! [Grumiller, Hohm '00], [Alishahiha, Nasen '10]
- $c_{L / R} \neq 0!\left\langle\psi^{m_{1}} \psi^{m_{1}}\right\rangle \sim-\left\langle\psi^{m_{2}} \psi^{m_{2}}\right\rangle \sim \pm c \epsilon$. Jordan block, new (consistent) BCs! [Oliva, Tempo, Troncoso '09]
- Actually this theory has many interesting features already logless.
[Bergshoeff, Hohm, Townsend '09]

GMG parameter space

- $D^{m_{1}}=D^{L}$:
$T_{z z}$ has log-partner!
- $D^{m_{1}}=D^{m_{2}}$:
\mathcal{O}^{M} has log-partner!
- $D^{m_{1}}=D^{m_{2}}=D^{L}$:

Rank 3 Jordan cell!

- $c_{L}=c_{R}=0$: log-NMG Both $T_{z z}$ and $T_{\bar{z} \bar{z}}$ logged!
- PMG! $c_{L}=c_{R} \neq 0$ Enhanced gauge symmetry!

GMG parameter space

- $D^{m_{1}}=D^{L}$:
$T_{z z}$ has log-partner!
- $D^{m_{1}}=D^{m_{2}}$:
\mathcal{O}^{M} has log-partner!
- $D^{m_{1}}=D^{m_{2}}=D^{L}$:

Rank 3 Jordan cell!

- $c_{L}=c_{R}=0$: log-NMG Both $T_{z z}$ and $T_{\bar{z} \bar{z}}$ logged!
- PMG! $c_{L}=c_{R} \neq 0$ Enhanced gauge symmetry!

GMG parameter space

- $D^{m_{1}}=D^{L}$:
$T_{z z}$ has log-partner!
- $D^{m_{1}}=D^{m_{2}}$:
\mathcal{O}^{M} has log-partner!
- $D^{m_{1}}=D^{m_{2}}=D^{L}$:

Rank 3 Jordan cell!

- $c_{L}=c_{R}=0$: log-NMG Both $T_{z z}$ and $T_{\bar{z} \bar{z}}$ logged!
- PMG! $c_{L}=c_{R} \neq 0$ Enhanced gauge symmetry!

Test of the conjectures

...GMG

- Rank 3 Jordan cell if $m_{1} \ell=m_{2} \ell=1$. $\log ^{2}$ behaviour! [Liu, Sun'og]

Test of the conjectures

...GMG

- Rank 3 Jordan cell if $m_{1} \ell=m_{2} \ell=1$. $\log ^{2}$ behaviour! [Liu, Sun'09]
- Central charges vanish when they should.

Test of the conjectures

...GMG

- Rank 3 Jordan cell if $m_{1} \ell=m_{2} \ell=1$. $\log ^{2}$ behaviour! [Liu, Sun'oo]
- Central charges vanish when they should.
- In fact, limit procedure always consistent! [Grumiller, NJ, Zojer '10]

Test of the conjectures

...GMG

- Rank 3 Jordan cell if $m_{1} \ell=m_{2} \ell=1$. $\log ^{2}$ behaviour! [Liu, Sun'09]
- Central charges vanish when they should.
- In fact, limit procedure always consistent! [Grumiller, nJ, Zojer '10]
- 2-point correlators?

Test of the conjectures

...GMG

- Rank 3 Jordan cell if $m_{1} \ell=m_{2} \ell=1$. $\log ^{2}$ behaviour! [Liu, Sun'oo]
- Central charges vanish when they should.
- In fact, limit procedure always consistent! [Grumiller, NJ, Zojer '10]
- 2-point correlators?
- 3-point correlators?

Test of the conjectures

...GMG

- Rank 3 Jordan cell if $m_{1} \ell=m_{2} \ell=1$. $\log ^{2}$ behaviour! [Liu, Sun'oo]
- Central charges vanish when they should.
- In fact, limit procedure always consistent! [Grumiller, NJ, Zojer '10]
- 2-point correlators?
- 3-point correlators?
- 1-point correlators?

Conclusions and outlook

- AdS/LCFT well supported for TMG at $\mu \ell=1$.

Conclusions and outlook

- AdS/LCFT well supported for TMG at $\mu \ell=1$.
- Also fairly well for NMG at $m_{1} \ell=1=-m_{2} \ell$

Conclusions and outlook

- AdS/LCFT well supported for TMG at $\mu \ell=1$.
- Also fairly well for NMG at $m_{1} \ell=1=-m_{2} \ell$
- Structural similarity suggestive for GMG.

Conclusions and outlook

- AdS/LCFT well supported for TMG at $\mu \ell=1$.
- Also fairly well for NMG at $m_{1} \ell=1=-m_{2} \ell$
- Structural similarity suggestive for GMG.
- Also for extended NMG!

Conclusions and outlook

- AdS/LCFT well supported for TMG at $\mu \ell=1$.
- Also fairly well for NMG at $m_{1} \ell=1=-m_{2} \ell$
- Structural similarity suggestive for GMG.
- Also for extended NMG!

To do:

Conclusions and outlook

- AdS/LCFT well supported for TMG at $\mu \ell=1$.
- Also fairly well for NMG at $m_{1} \ell=1=-m_{2} \ell$
- Structural similarity suggestive for GMG.
- Also for extended NMG!

To do:

- Further support!

Conclusions and outlook

- AdS/LCFT well supported for TMG at $\mu \ell=1$.
- Also fairly well for NMG at $m_{1} \ell=1=-m_{2} \ell$
- Structural similarity suggestive for GMG.
- Also for extended NMG!

To do:

- Further support!
- But, more importantly: connect to real physics!

Conclusions and outlook

- AdS/LCFT well supported for TMG at $\mu \ell=1$.
- Also fairly well for NMG at $m_{1} \ell=1=-m_{2} \ell$
- Structural similarity suggestive for GMG.
- Also for extended NMG!

To do:

- Further support!
- But, more importantly: connect to real physics!

Thank you!

