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Logarithmic CFT

• LCFTs ([Gurarie ’93]) are non-unitary CFTs.

• Useful for describing: systems with quenched disorder.

• (E.g., spin glasses, quenced random magnets, self-avoiding
polymers and percolation.) [Cardy, Gurarie, Ludwig, Tabar...]

• Challenging to describe!

• Defining feature: Two operators O and Olog, have degenerate
conformal weights and form a logarithmic pair:

H

(
Olog

O

)
=

(
E 1
0 E

)(
Olog

O

)
J

(
Olog

O

)
=

(
j 0
0 j

)(
Olog

O

)

• Reviews: [Flohr] hep-th/0111228, [Gaberdiel] hep-th/0111260
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Logarithmic CFTs
...correlators

• There are logs in the correlators!

• One state is zero norm!

• O can be OL ≡ Tzz(z). Then cL = 0.

〈O(z)O(0)〉 =
0

2z2h

〈O(z)Olog(0, 0)〉 =
b

2z2h

〈Olog(z , z̄)Olog(0, 0)〉 = −
b ln (m2

L|z |2)

z2h
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Logarithmic CFTs
...as limits

• Consider a 1-parameter (ε) family of CFTs.

• Suppose two operators OA/B(ε) coincide at ε = 0:
OA(0) = OB(0).

• The weights satisfy ∆AB = hA(ε)− hB(ε) = ε.

〈OI (z)OJ(0, 0)〉 =
δIJcI (ε)

2z2hI (ε)

• If the cI vanish as cA ∼ Bε and cB ∼ −Bε we can define

Olog ≡ lim
∆AB→0

OA −OB

∆AB
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Logarithmic CFTs
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Gravity duals to LCFTs
...early hints

• Early ’08, Li, Song and Strominger studied a 3-dimensional gravity
theory ([Deser, Jackiw, Templeton ’82])

STMG = SEH +
1

`2
SCC +

1

µ
SCS

• Linearized around AdS3: gµν = gAdS
µν + Re(ψµν)

(DLDRDmψ)µν = 0

with

DL/R = /∂ ± 1

`
Dm = /∂ + µ

Dmψm = 0 is a massive graviton. ψL/R are “pure gauge” ∼ Tzz/Tz̄ z̄ .
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Gravity duals to LCFTs
...early hints

• At the tuning µ` = 1

◦ DL = Dm =⇒ ψL = ψm

◦ 〈ψLψL〉 ∼ cL → 0

• LSS conjectured: ψL = ψm pure gauge! Chiral, unitary CFT dual!

• The construction [Grumiller, NJ ’08]

ψlog = lim
µ`→1

ψm − ψL

µ`− 1
=⇒

H

(
ψlog

O

)
=

(
2 1
0 2

)(
ψlog

ψL

)
J

(
ψlog

ψL

)
=

(
2 0
0 2

)(
ψlog

ψL

)
• Conjecture: µ` = 1 is dual to an LCFT!
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Gravity duals to LCFTs
...candidate theories

• Note that to have a log partner to Tzz (many applications), a
metric mode must degenerate. Higher curvature theories!

• Many interesting in 3d!

• New Massive Gravity, [Bergshoeff, Hohm, Townsend ’09]

SNMG =
1

κ2

∫
d3x
√
−g
[
σR +

1

m2

(
RµνRµν −

3

8
R2
)
− 2λm2

]
• Add 1

µSCS : Generalised Massive Gravity. Around AdS3:

(DLDRDm1Dm2ψ)µν = 0 m1,2` =
m2`2

2µ`
±

√
1

2
− σm2`2 +

m4`4

4µ2`2
.
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GMG parameter space

• Dm1 = DL:
Tzz has log-partner!

• Dm1 = Dm2 :
OM has log-partner!

• Dm1 = Dm2 = DL:
Rank 3 Jordan cell!

• cL = cR = 0: log-NMG
Both Tzz and Tz̄ z̄ logged!

• PMG! cL = cR 6= 0
Enhanced gauge symmetry!

6

m2`

-m1`

cL = 0

cL = 0cR = 0

cR = 0

m1 = m2

NMG

es
es v
v u
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Test of the conjectures
...TMG

• cL = 3`
2G (1− 1/µ`)→ 0 and ψm → ψL

[Li, Song, Strominger ’08]

• ψlog is a valid solution. Jordan block! [Grumiller, NJ ’08]

• ψlog = propagating dof also nonlinearly. [Grumiller, Jackiw, NJ ’08] [Carlip ’08]

• ∃ consistent BCs for ψlog. ASG = Virasoro2. [Grumiller, NJ ’08]

• Correlators!

〈ψlogψlog〉 = δ(2)Sgrav(ψlog, ψlog) = −
b ln (m2

L|z |2)

z2h

The ‘new anomaly’ b = −3`
G . [Skenderis, Taylor, v Rees ’09] [Grumiller, Sachs ’09]

• 3-point correlator also match! [Grumiller, Sachs ’09]

• 1-loop partition function consistent with LCFT. [Gaberdiel, Grumiller, Sachs ’10]
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GMG parameter space

• Dm1 = DL:
Tzz has log-partner!

• Dm1 = Dm2 :
OM has log-partner!

• Dm1 = Dm2 = DL:
Rank 3 Jordan cell!

• cL = cR = 0: log-NMG
Both Tzz and Tz̄ z̄ logged!

• PMG! cL = cR 6= 0
Enhanced gauge symmetry!
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Test of the conjectures
...NMG

• Two limits: ψm1/m2 → ψL/R or ψm1 → ψm2 → ψ0

• cL/R = 3`
2G (σ + 1

2m2`2 )→ 0. [Bergshoeff, Hohm, Townsend ’09]

• ψm1,2 → ψL/R , ψlog is a valid solution. Jordan block! [Liu, Sun ’09]

• ψlog = propagating dof also nonlinearly. [Blagojević, Cvetković ’10]

• ∃ consistent BCs for ψlog. ASG = Virasoro2. [Liu, Sun ’09]

• 2-point correlators match! [Grumiller, Hohm ’09], [Alishahiha, Naseh ’10]

• cL/R 6= 0! 〈ψm1ψm1〉 ∼ −〈ψm2ψm2〉 ∼ ±c ε. Jordan block, new
(consistent) BCs! [Oliva, Tempo, Troncoso ’09]

• Actually this theory has many interesting features already logless.
[Bergshoeff, Hohm, Townsend ’09]
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• ∃ consistent BCs for ψlog. ASG = Virasoro2. [Liu, Sun ’09]

• 2-point correlators match! [Grumiller, Hohm ’09], [Alishahiha, Naseh ’10]

• cL/R 6= 0! 〈ψm1ψm1〉 ∼ −〈ψm2ψm2〉 ∼ ±c ε. Jordan block, new
(consistent) BCs! [Oliva, Tempo, Troncoso ’09]

• Actually this theory has many interesting features already logless.
[Bergshoeff, Hohm, Townsend ’09]

13 of 16



GMG parameter space

• Dm1 = DL:
Tzz has log-partner!

• Dm1 = Dm2 :
OM has log-partner!

• Dm1 = Dm2 = DL:
Rank 3 Jordan cell!

• cL = cR = 0: log-NMG
Both Tzz and Tz̄ z̄ logged!

• PMG! cL = cR 6= 0
Enhanced gauge symmetry!

6

m2`

-m1`

cL = 0

cL = 0cR = 0

cR = 0

m1 = m2

NMG

es
es v
v u

14 of 16



GMG parameter space

• Dm1 = DL:
Tzz has log-partner!

• Dm1 = Dm2 :
OM has log-partner!

• Dm1 = Dm2 = DL:
Rank 3 Jordan cell!

• cL = cR = 0: log-NMG
Both Tzz and Tz̄ z̄ logged!

• PMG! cL = cR 6= 0
Enhanced gauge symmetry!

6

m2`

-m1`

cL = 0

cL = 0cR = 0

cR = 0

m1 = m2

NMG

es
es v
v u

14 of 16



GMG parameter space

• Dm1 = DL:
Tzz has log-partner!

• Dm1 = Dm2 :
OM has log-partner!

• Dm1 = Dm2 = DL:
Rank 3 Jordan cell!

• cL = cR = 0: log-NMG
Both Tzz and Tz̄ z̄ logged!

• PMG! cL = cR 6= 0
Enhanced gauge symmetry!

6

m2`

-m1`

cL = 0

cL = 0cR = 0

cR = 0

m1 = m2

NMG

es
es v
v u

14 of 16



Test of the conjectures
...GMG

• Rank 3 Jordan cell if m1` = m2` = 1. log2 behaviour! [Liu, Sun’09]

• Central charges vanish when they should.

• In fact, limit procedure always consistent! [Grumiller, NJ, Zojer ’10]

• 2-point correlators?

• 3-point correlators?

• 1-point correlators?
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Conclusions and outlook

• AdS/LCFT well supported for TMG at µ` = 1.

• Also fairly well for NMG at m1` = 1 = −m2`

• Structural similarity suggestive for GMG.

• Also for extended NMG!

To do:

• Further support!

• But, more importantly: connect to real physics!

Thank you!

16 of 16



Conclusions and outlook

• AdS/LCFT well supported for TMG at µ` = 1.

• Also fairly well for NMG at m1` = 1 = −m2`

• Structural similarity suggestive for GMG.

• Also for extended NMG!

To do:

• Further support!

• But, more importantly: connect to real physics!

Thank you!

16 of 16



Conclusions and outlook

• AdS/LCFT well supported for TMG at µ` = 1.

• Also fairly well for NMG at m1` = 1 = −m2`

• Structural similarity suggestive for GMG.

• Also for extended NMG!

To do:

• Further support!

• But, more importantly: connect to real physics!

Thank you!

16 of 16



Conclusions and outlook

• AdS/LCFT well supported for TMG at µ` = 1.

• Also fairly well for NMG at m1` = 1 = −m2`

• Structural similarity suggestive for GMG.

• Also for extended NMG!

To do:

• Further support!

• But, more importantly: connect to real physics!

Thank you!

16 of 16



Conclusions and outlook

• AdS/LCFT well supported for TMG at µ` = 1.

• Also fairly well for NMG at m1` = 1 = −m2`

• Structural similarity suggestive for GMG.

• Also for extended NMG!

To do:

• Further support!

• But, more importantly: connect to real physics!

Thank you!

16 of 16



Conclusions and outlook

• AdS/LCFT well supported for TMG at µ` = 1.

• Also fairly well for NMG at m1` = 1 = −m2`

• Structural similarity suggestive for GMG.

• Also for extended NMG!

To do:

• Further support!

• But, more importantly: connect to real physics!

Thank you!

16 of 16



Conclusions and outlook

• AdS/LCFT well supported for TMG at µ` = 1.

• Also fairly well for NMG at m1` = 1 = −m2`

• Structural similarity suggestive for GMG.

• Also for extended NMG!

To do:

• Further support!

• But, more importantly: connect to real physics!

Thank you!

16 of 16



Conclusions and outlook

• AdS/LCFT well supported for TMG at µ` = 1.

• Also fairly well for NMG at m1` = 1 = −m2`

• Structural similarity suggestive for GMG.

• Also for extended NMG!

To do:

• Further support!

• But, more importantly: connect to real physics!

Thank you!

16 of 16


	Logarithmic CFT
	Lightning review
	LCFTs as limits

	Gravity duals
	Early hints
	Candidate theories

	Tests of the conjectures
	TMG
	NMG
	GMG

	Conclusion

