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LCFTs ((curarie 031) are non-unitary CFTs.

Useful for describing: systems with quenched disorder.
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polymers and perCO|atI0n) [Cardy, Gurarie, Ludwig, Tabar...]

Challenging to describe!

Defining feature: Two operators O and 0%, have degenerate
conformal weights and form a logarithmic pair.
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(0)=G &) (%) (%)=6()
e Reviews: [Flon] hep—th/0111228, [Gaberdiel] hep—th/0111260
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Logarithmic CFTs

...correlators

e There are logs in the correlators!

e One state is zero norm!

e O can be Ot = T,,(z). Then ¢, = 0.

(0(2) 0(0)) = 555
(0(2)0°%(0,0)) = 52
bin(mi|z?)

(0°8(2,2)0'°8(0,0)) = o
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The weights satisfy Aag = h(e) — hB(e) = .

1J €
(©'(2)0"(0,0)) = S £t

If the ¢; vanish as cq4 ~ Be and cg ~ —Be we can define
. 0A-08B
O = |m — —
Dag—0  App
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Logarithmic CFTs

...as limits

o 040 = 08| and Aap = h*(e) — hB(e).
e The ¢; vanish as cy ~ BAsg and cg ~ —BAxp

A B
O = |im u
AAB—>0 AAB

e In the limit we get the non-zero correlators

B
A lo _
(0%(2)0%(0,0)) = 572h(0)

—\ o Bin(m?|z|?
(0"5(z,2)0"%(0,0)) = ~ > "L ED)
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Logarithmic CFTs

...as limits

OAlezo = OB|—g and A s = h(e) — hB(e).
The ¢ vanish as ca ~ BAag and cg ~ —BAp
A_ »B
oo — |im 9797
AAB—>0 AAB

In the limit we get the non-zero correlators

B
A log _
<O (Z)O (070)> - 222/,(0)
og(, 3\l Bln (mf|z|?)
<Ol g(z’z)ol g(070)> = - ZQh(g)
e Like an LCFT!
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Gravity duals to LCFTs

...early hints

e Early '08, Li, Song and Strominger studied a 3-dimensional gravity
theory ([Deser, Jackiw, Templeton '82])

1 1
Stvma = Sen + [2500 + ESCS

e Linearized around AdSs: g, = g;f‘l,ds + Re(v)
(D*DRD™),, =0
with 1
DYR =gt D" =d+p

D™p™ = 0 is a massive graviton. /R are “pure gauge” ~ T.2/ Tss.
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Gravity duals to LCFTs

...early hints

e At the tuning uf =1
o Dt=D" — Yt =9ym
o (Yrpt) ~ e —0
e LSS conjectured: ¢t = 1™ pure gauge! Chiral, unitary CFT duall
e The construction [Grumiller, NJ ‘08]
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Gravity duals to LCFTs

...early hints

e At the tuning uf =1
o Dt =D"m = L =™
o (Yrpt) ~ e —0
e LSS conjectured: ¢t = 1™ pure gauge! Chiral, unitary CFT duall
e The construction [Grumiller, NJ ‘08]
P — gt

log — |im —
1/] pul—1 uﬁ—l

wlog 2 1 ,L/}log ,L/}log 2 0 wlog
()= 2) () ()= 2) ()
e Conjecture: puf =1 is dual to an LCFT!
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Gravity duals to LCFTs

...candidate theories

® Note that to have a log partner to T, (many applications), a
metric mode must degenerate. Higher curvature theories!

e Many interesting in 3d!

L4 NeW MaSSiVe GraVity, [Bergshoeff, Hohm, Townsend '09]

1 1 3
Swe = =5 /d3x\/—g oR+ = (R™ Ry, - SR - 22m?|

e Add %SCS: Generalised Massive Gravity. Around AdSs:

22 4 p4
LR pym ym _ . m 14 1 m*/¢
(D D*D™D ZQZJ)MV—O m172€— i\/2—0m2€2+4u2€2.
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GMG parameter space

e D™ = D" cr =0
T, has log-partner! I I
e DM — pme. I I
OM has log-partner! I I

e DM — pm2 — pL. | | 7 c =0
Rank 3 Jordan cell! ? _?

e ¢, = cr =0: log-NMG .
Both T, and T3 logged! - —/@’ n _,_ T T cr=0

e PMG! ¢ =cg #0 y;
Enhanced gauge symmetry!
d | ' NMG
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The ‘neW anomaly’ b - _%f . [Skenderis, Taylor, v Rees '09] [Grumiller, Sachs '09]

e 3-point correlator also match! [Grumiler, sachs '09)

e 1-loop partition function consistent with LCFT. [caberdiel, Grumiller, Sachs '10]
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e Also for extended NMG!

To do:
e Further support!

e But, more importantly: connect to real physics!
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