### Three-dimensional gravity and logarithmic CFT Nordic Network Meeting, Göteborg



Niklas Johansson

Vienna University of Technology

October 22 2010

### Outline



Logarithmic CFT

Lightning review LCFTs as limits

Gravity duals Early hints Candidate theories

Tests of the conjectures TMG NMG GMG

### Conclusion

2 of 16





• LCFTs ([Gurarie '93]) are non-unitary CFTs.





- LCFTs ([Gurarie '93]) are non-unitary CFTs.
- Useful for describing: systems with quenched disorder.





- Useful for describing: systems with quenched disorder.
- (E.g., spin glasses, quenced random magnets, self-avoiding polymers and percolation.) [Cardy, Gurarie, Ludwig, Tabar...]





- Useful for describing: systems with quenched disorder.
- (E.g., spin glasses, quenced random magnets, self-avoiding polymers and percolation.) [Cardy, Gurarie, Ludwig, Tabar...]
- Challenging to describe!



- Useful for describing: systems with quenched disorder.
- (E.g., spin glasses, quenced random magnets, self-avoiding polymers and percolation.) [Cardy, Gurarie, Ludwig, Tabar...]
- Challenging to describe!
- Defining feature: Two operators  $\mathcal{O}$  and  $\mathcal{O}^{\log}$ , have degenerate conformal weights and form a *logarithmic pair*.





- Useful for describing: systems with quenched disorder.
- (E.g., spin glasses, quenced random magnets, self-avoiding polymers and percolation.) [Cardy, Gurarie, Ludwig, Tabar...]
- Challenging to describe!
- Defining feature: Two operators  $\mathcal{O}$  and  $\mathcal{O}^{\log}$ , have degenerate conformal weights and form a *logarithmic pair*.

$$H\begin{pmatrix} \mathcal{O}^{\log} \\ \mathcal{O} \end{pmatrix} = \begin{pmatrix} E & 1 \\ 0 & E \end{pmatrix} \begin{pmatrix} \mathcal{O}^{\log} \\ \mathcal{O} \end{pmatrix} \qquad J\begin{pmatrix} \mathcal{O}^{\log} \\ \mathcal{O} \end{pmatrix} = \begin{pmatrix} j & 0 \\ 0 & j \end{pmatrix} \begin{pmatrix} \mathcal{O}^{\log} \\ \mathcal{O} \end{pmatrix}$$





- Useful for describing: systems with quenched disorder.
- (E.g., spin glasses, quenced random magnets, self-avoiding polymers and percolation.) [Cardy, Gurarie, Ludwig, Tabar...]
- Challenging to describe!
- Defining feature: Two operators  $\mathcal{O}$  and  $\mathcal{O}^{\log}$ , have degenerate conformal weights and form a *logarithmic pair*.

$$H\begin{pmatrix} \mathcal{O}^{\log} \\ \mathcal{O} \end{pmatrix} = \begin{pmatrix} E & 1 \\ 0 & E \end{pmatrix} \begin{pmatrix} \mathcal{O}^{\log} \\ \mathcal{O} \end{pmatrix} \qquad J\begin{pmatrix} \mathcal{O}^{\log} \\ \mathcal{O} \end{pmatrix} = \begin{pmatrix} j & 0 \\ 0 & j \end{pmatrix} \begin{pmatrix} \mathcal{O}^{\log} \\ \mathcal{O} \end{pmatrix}$$

Reviews: [Flohr] hep-th/0111228, [Gaberdiel] hep-th/0111260



...correlators

• There are logs in the correlators!







...correlators

• There are logs in the correlators!

$$\begin{split} \langle \mathcal{O}(z) \, \mathcal{O}(0) \rangle &= \frac{0}{2z^{2h}} \\ \langle \mathcal{O}(z) \mathcal{O}^{\log}(0,0) \rangle &= \frac{b}{2z^{2h}} \\ \langle \mathcal{O}^{\log}(z,\bar{z}) \mathcal{O}^{\log}(0,0) \rangle &= -\frac{b \ln \left(m_L^2 |z|^2\right)}{z^{2h}} \end{split}$$





...correlators

- There are logs in the correlators!
- One state is zero norm!

$$\begin{split} \langle \mathcal{O}(z) \, \mathcal{O}(0) \rangle &= \frac{0}{2z^{2h}} \\ \langle \mathcal{O}(z) \mathcal{O}^{\log}(0,0) \rangle &= \frac{b}{2z^{2h}} \\ \langle \mathcal{O}^{\log}(z,\bar{z}) \mathcal{O}^{\log}(0,0) \rangle &= -\frac{b \ln \left(m_L^2 |z|^2\right)}{z^{2h}} \end{split}$$







...correlators

- There are logs in the correlators!
- One state is zero norm!
- $\mathcal{O}$  can be  $\mathcal{O}^L \equiv T_{zz}(z)$ . Then  $c_L = 0$ .

$$\begin{split} \langle \mathcal{O}(z) \, \mathcal{O}(0) \rangle &= \frac{0}{2z^{2h}} \\ \langle \mathcal{O}(z) \mathcal{O}^{\log}(0,0) \rangle &= \frac{b}{2z^{2h}} \\ \langle \mathcal{O}^{\log}(z,\bar{z}) \mathcal{O}^{\log}(0,0) \rangle &= -\frac{b \ln \left(m_L^2 |z|^2\right)}{z^{2h}} \end{split}$$



...as limits

• Consider a 1-parameter  $(\epsilon)$  family of CFTs.







...as limits

- Consider a 1-parameter ( $\epsilon$ ) family of CFTs.
- Suppose two operators  $\mathcal{O}^{A/B}(\epsilon)$  coincide at  $\epsilon = 0$ :  $\mathcal{O}^{A}(0) = \mathcal{O}^{B}(0).$





...as limits

- Consider a 1-parameter ( $\epsilon$ ) family of CFTs.
- Suppose two operators O<sup>A/B</sup>(ε) coincide at ε = 0:
   O<sup>A</sup>(0) = O<sup>B</sup>(0).
- The weights satisfy  $\Delta_{AB} = h^A(\epsilon) h^B(\epsilon) = \epsilon$ .







...as limits

- Consider a 1-parameter ( $\epsilon$ ) family of CFTs.
- Suppose two operators O<sup>A/B</sup>(ε) coincide at ε = 0:
   O<sup>A</sup>(0) = O<sup>B</sup>(0).
- The weights satisfy  $\Delta_{AB} = h^A(\epsilon) h^B(\epsilon) = \epsilon$ .

$$\langle \mathcal{O}^{I}(z)\mathcal{O}^{J}(0,0)\rangle = rac{\delta^{IJ}c_{I}(\epsilon)}{2z^{2h^{I}(\epsilon)}}$$





...as limits

- Consider a 1-parameter ( $\epsilon$ ) family of CFTs.
- Suppose two operators O<sup>A/B</sup>(ε) coincide at ε = 0:
   O<sup>A</sup>(0) = O<sup>B</sup>(0).
- The weights satisfy  $\Delta_{AB} = h^A(\epsilon) h^B(\epsilon) = \epsilon$ .

$$\langle \mathcal{O}^{I}(z)\mathcal{O}^{J}(0,0)\rangle = rac{\delta^{IJ}c_{I}(\epsilon)}{2z^{2h^{I}(\epsilon)}}$$

• If the  $c_I$  vanish as  $c_A \sim B\epsilon$  and  $c_B \sim -B\epsilon$  we can define





...as limits

- Consider a 1-parameter ( $\epsilon$ ) family of CFTs.
- Suppose two operators O<sup>A/B</sup>(ε) coincide at ε = 0:
   O<sup>A</sup>(0) = O<sup>B</sup>(0).
- The weights satisfy  $\Delta_{AB} = h^A(\epsilon) h^B(\epsilon) = \epsilon$ .

$$\langle \mathcal{O}^{I}(z)\mathcal{O}^{J}(0,0)\rangle = rac{\delta^{IJ}c_{I}(\epsilon)}{2z^{2h'(\epsilon)}}$$

• If the  $c_l$  vanish as  $c_A \sim B\epsilon$  and  $c_B \sim -B\epsilon$  we can define  $\mathcal{O}^{\log} \equiv \lim_{\Delta_{AB} \to 0} \frac{\mathcal{O}^A - \mathcal{O}^B}{\Delta_{AB}}$ 





...as limits

- $\mathcal{O}^{A}|_{\epsilon=0} = \mathcal{O}^{B}|_{\epsilon=0}$  and  $\Delta_{AB} = h^{A}(\epsilon) h^{B}(\epsilon)$ .
- The  $c_l$  vanish as  $c_A \sim B \Delta_{AB}$  and  $c_B \sim -B \Delta_{AB}$

$$\mathcal{O}^{\mathrm{log}} \equiv \lim_{\Delta_{AB} \rightarrow 0} \frac{\mathcal{O}^A - \mathcal{O}^B}{\Delta_{AB}}$$

• In the limit we get the non-zero correlators

$$egin{aligned} &\langle \mathcal{O}^{\mathcal{A}}(z)\mathcal{O}^{\log}(0,0)
angle &= rac{B}{2z^{2h(0)}} \ &\langle \mathcal{O}^{\log}(z,ar{z})\mathcal{O}^{\log}(0,0)
angle &= -rac{B\ln{(m_L^2|z|^2)}}{z^{2h(0)}} \end{aligned}$$





...as limits

- $\mathcal{O}^A|_{\epsilon=0} = \mathcal{O}^B|_{\epsilon=0}$  and  $\Delta_{AB} = h^A(\epsilon) h^B(\epsilon)$ .
- The  $c_l$  vanish as  $c_A \sim B \Delta_{AB}$  and  $c_B \sim -B \Delta_{AB}$

$$\mathcal{O}^{\log} \equiv \lim_{\Delta_{AB} \to 0} \frac{\mathcal{O}^A - \mathcal{O}^B}{\Delta_{AB}}$$

- In the limit we get the non-zero correlators  $\langle \mathcal{O}^{A}(z)\mathcal{O}^{\log}(0,0)\rangle = \frac{B}{2z^{2h(0)}}$   $\langle \mathcal{O}^{\log}(z,\bar{z})\mathcal{O}^{\log}(0,0)\rangle = -\frac{B\ln(m_{L}^{2}|z|^{2})}{z^{2h(0)}}$
- Like an LCFT!

6 of 16

• Early '08, Li, Song and Strominger studied a 3-dimensional gravity theory ([Deser, Jackiw, Templeton '82])



• Early '08, Li, Song and Strominger studied a 3-dimensional gravity theory ([Deser, Jackiw, Templeton '82])

$$S_{ ext{TMG}} = S_{ ext{EH}} + rac{1}{\ell^2}S_{ ext{CC}} + rac{1}{\mu}S_{ ext{CS}}$$

• Early '08, Li, Song and Strominger studied a 3-dimensional gravity theory ([Deser, Jackiw, Templeton '82])

$$S_{\mathrm{TMG}} = S_{\mathrm{EH}} + rac{1}{\ell^2}S_{\mathrm{CC}} + rac{1}{\mu}S_{\mathrm{CS}}$$

• Linearized around AdS<sub>3</sub>:  $g_{\mu\nu} = g_{\mu\nu}^{\rm AdS} + {\sf Re}(\psi_{\mu\nu})$ 



• Early '08, Li, Song and Strominger studied a 3-dimensional gravity theory ([Deser, Jackiw, Templeton '82])

$$S_{\mathrm{TMG}} = S_{\mathrm{EH}} + rac{1}{\ell^2}S_{\mathrm{CC}} + rac{1}{\mu}S_{\mathrm{CS}}$$

• Linearized around AdS<sub>3</sub>:  $g_{\mu\nu} = g_{\mu\nu}^{AdS} + \text{Re}(\psi_{\mu\nu})$  $(D^L D^R D^m \psi)_{\mu\nu} = 0$ 



• Early '08, Li, Song and Strominger studied a 3-dimensional gravity theory ([Deser, Jackiw, Templeton '82])

$$S_{\mathrm{TMG}} = S_{\mathrm{EH}} + rac{1}{\ell^2}S_{\mathrm{CC}} + rac{1}{\mu}S_{\mathrm{CS}}$$

• Linearized around AdS<sub>3</sub>:  $g_{\mu\nu} = g_{\mu\nu}^{AdS} + \text{Re}(\psi_{\mu\nu})$  $(D^L D^R D^m \psi)_{\mu\nu} = 0$ 

with

$$D^{L/R} = \partial \!\!\!/ \pm rac{1}{\ell} \qquad D^m = \partial \!\!\!/ + \mu$$

 $D^m \psi^m = 0$  is a massive graviton.  $\psi^{L/R}$  are "pure gauge"  $\sim T_{zz}/T_{\bar{z}\bar{z}}$ .





...early hints

• At the tuning  $\mu \ell = 1$ 





- At the tuning  $\mu \ell = 1$ 
  - $\circ D^{L} = D^{m} \implies \psi^{L} = \psi^{m}$  $\circ \langle \psi^{L} \psi^{L} \rangle \sim c_{L} \rightarrow 0$





- At the tuning μℓ = 1
   D<sup>L</sup> = D<sup>m</sup> ⇒ ψ<sup>L</sup> = ψ<sup>m</sup>
  - $\circ \langle \psi^L \psi^L \rangle \sim c_L \to 0$
- LSS conjectured:  $\psi^L = \psi^m$  pure gauge! Chiral, unitary CFT dual!







- At the tuning μℓ = 1
   D<sup>L</sup> = D<sup>m</sup> ⇒ ψ<sup>L</sup> = ψ<sup>m</sup>
  - $\circ \langle \psi^L \psi^L \rangle \sim c_L \to 0$
- LSS conjectured:  $\psi^L = \psi^m$  pure gauge! Chiral, unitary CFT dual!







- At the tuning  $\mu \ell = 1$   $\circ D^L = D^m \Longrightarrow \psi^L = \psi^m$  $\circ \langle \psi^L \psi^L \rangle \sim c_L \to 0$
- LSS conjectured:  $\psi^L = \psi^m$  pure gauge! Chiral, unitary CFT dual!
- The construction [Grumiller, NJ '08]

$$\psi^{\log} = \lim_{\mu\ell \to 1} \frac{\psi^m - \psi^L}{\mu\ell - 1} \implies$$





- At the tuning  $\mu \ell = 1$   $\circ D^L = D^m \Longrightarrow \psi^L = \psi^m$  $\circ \langle \psi^L \psi^L \rangle \sim c_L \to 0$
- LSS conjectured:  $\psi^L = \psi^m$  pure gauge! Chiral, unitary CFT dual!
- The construction [Grumiller, NJ '08]

$$\psi^{\log} = \lim_{\mu\ell \to 1} \frac{\psi^m - \psi^L}{\mu\ell - 1} \implies$$





- At the tuning  $\mu \ell = 1$   $\circ D^L = D^m \Longrightarrow \psi^L = \psi^m$  $\circ \langle \psi^L \psi^L \rangle \sim c_L \to 0$
- LSS conjectured:  $\psi^L = \psi^m$  pure gauge! Chiral, unitary CFT dual!
- The construction [Grumiller, NJ '08]

$$\psi^{\log} = \lim_{\mu\ell \to 1} \frac{\psi^m - \psi^L}{\mu\ell - 1} \Longrightarrow$$
$$H\begin{pmatrix}\psi^{\log}\\\mathcal{O}\end{pmatrix} = \begin{pmatrix}2 & 1\\0 & 2\end{pmatrix}\begin{pmatrix}\psi^{\log}\\\psi^L\end{pmatrix} \qquad J\begin{pmatrix}\psi^{\log}\\\psi^L\end{pmatrix} = \begin{pmatrix}2 & 0\\0 & 2\end{pmatrix}\begin{pmatrix}\psi^{\log}\\\psi^L\end{pmatrix}$$





### ...early hints

- At the tuning  $\mu \ell = 1$   $\circ D^L = D^m \Longrightarrow \psi^L = \psi^m$  $\circ \langle \psi^L \psi^L \rangle \sim c_L \to 0$
- LSS conjectured:  $\psi^L = \psi^m$  pure gauge! Chiral, unitary CFT dual!
- The construction [Grumiller, NJ '08]

$$\psi^{\log} = \lim_{\mu\ell \to 1} \frac{\psi^m - \psi^L}{\mu\ell - 1} \Longrightarrow$$
$$\mathcal{H}\begin{pmatrix}\psi^{\log}\\\mathcal{O}\end{pmatrix} = \begin{pmatrix}2 & 1\\0 & 2\end{pmatrix}\begin{pmatrix}\psi^{\log}\\\psi^L\end{pmatrix} \qquad J\begin{pmatrix}\psi^{\log}\\\psi^L\end{pmatrix} = \begin{pmatrix}2 & 0\\0 & 2\end{pmatrix}\begin{pmatrix}\psi^{\log}\\\psi^L\end{pmatrix}$$

• Conjecture:  $\mu \ell = 1$  is dual to an LCFT!

8 of 16



...candidate theories

- Note that to have a log partner to T<sub>zz</sub> (many applications), a metric mode must degenerate. Higher curvature theories!
- Many interesting in 3d!





### ...candidate theories

- Note that to have a log partner to T<sub>zz</sub> (many applications), a metric mode must degenerate. Higher curvature theories!
- Many interesting in 3d!
- New Massive Gravity, [Bergshoeff, Hohm, Townsend '09]

$$S_{\rm NMG} = \frac{1}{\kappa^2} \int d^3 x \sqrt{-g} \left[ \sigma R + \frac{1}{m^2} \left( R^{\mu\nu} R_{\mu\nu} - \frac{3}{8} R^2 \right) - 2\lambda m^2 \right]$$
#### Gravity duals to LCFTs

#### ...candidate theories

- Note that to have a log partner to T<sub>zz</sub> (many applications), a metric mode must degenerate. Higher curvature theories!
- Many interesting in 3d!
- New Massive Gravity, [Bergshoeff, Hohm, Townsend '09]

$$S_{\rm NMG} = \frac{1}{\kappa^2} \int d^3 x \sqrt{-g} \left[ \sigma R + \frac{1}{m^2} \left( R^{\mu\nu} R_{\mu\nu} - \frac{3}{8} R^2 \right) - 2\lambda m^2 \right]$$

• Add  $\frac{1}{\mu}S_{CS}$ : Generalised Massive Gravity. Around AdS<sub>3</sub>:

$$(D^{L}D^{R}D^{m_{1}}D^{m_{2}}\psi)_{\mu\nu} = 0 \qquad m_{1,2}\ell = \frac{m^{2}\ell^{2}}{2\mu\ell} \pm \sqrt{\frac{1}{2} - \sigma m^{2}\ell^{2} + \frac{m^{4}\ell^{4}}{4\mu^{2}\ell^{2}}}$$



- D<sup>m1</sup> = D<sup>L</sup>: T<sub>zz</sub> has log-partner!
- $D^{m_1} = D^{m_2}$ :  $\mathcal{O}^M$  has log-partner!
- $D^{m_1} = D^{m_2} = D^L$ : Rank 3 Jordan cell!
- c<sub>L</sub> = c<sub>R</sub> = 0: log-NMG Both T<sub>zz</sub> and T<sub>zz</sub> logged!
- PMG! c<sub>L</sub> = c<sub>R</sub> ≠ 0 Enhanced gauge symmetry!



- $D^{m_1} = D^L$ :  $T_{zz}$  has log-partner!
- $D^{m_1} = D^{m_2}$ :  $\mathcal{O}^M$  has log-partner!
- $D^{m_1} = D^{m_2} = D^L$ : Rank 3 Jordan cell!
- c<sub>L</sub> = c<sub>R</sub> = 0: log-NMG Both T<sub>zz</sub> and T<sub>zz</sub> logged!
- PMG! c<sub>L</sub> = c<sub>R</sub> ≠ 0 Enhanced gauge symmetry!



- $D^{m_1} = D^L$ :  $T_{zz}$  has log-partner!
- $D^{m_1} = D^{m_2}$ :  $\mathcal{O}^M$  has log-partner!
- $D^{m_1} = D^{m_2} = D^L$ : Rank 3 Jordan cell!
- c<sub>L</sub> = c<sub>R</sub> = 0: log-NMG Both T<sub>zz</sub> and T<sub>zz</sub> logged!
- PMG! c<sub>L</sub> = c<sub>R</sub> ≠ 0 Enhanced gauge symmetry!



- $D^{m_1} = D^L$ :  $T_{zz}$  has log-partner!
- $D^{m_1} = D^{m_2}$ :  $\mathcal{O}^M$  has log-partner!
- $D^{m_1} = D^{m_2} = D^L$ : Rank 3 Jordan cell!
- $c_L = c_R = 0$ : log-NMG Both  $T_{zz}$  and  $T_{\overline{z}\overline{z}}$  logged!
- PMG! c<sub>L</sub> = c<sub>R</sub> ≠ 0 Enhanced gauge symmetry!



- $D^{m_1} = D^L$ :  $T_{zz}$  has log-partner!
- $D^{m_1} = D^{m_2}$ :  $\mathcal{O}^M$  has log-partner!
- $D^{m_1} = D^{m_2} = D^L$ : Rank 3 Jordan cell!
- c<sub>L</sub> = c<sub>R</sub> = 0: log-NMG Both T<sub>zz</sub> and T<sub>zz</sub> logged!
- PMG!  $c_L = c_R \neq 0$ Enhanced gauge symmetry!



# Test of the conjectures ...TMG

• 
$$c_L=rac{3\ell}{2G}(1-1/\mu\ell)
ightarrow 0$$
 and  $\psi^m
ightarrow \psi^L$  [Li, Song, Strominger '08]





- $c_L=rac{3\ell}{2G}(1-1/\mu\ell)
  ightarrow 0$  and  $\psi^m
  ightarrow \psi^L$  [Li, Song, Strominger '08]
- $\psi^{\log}$  is a valid solution. Jordan block!  $_{\rm [Grumiller, NJ '08]}$



- $c_L=rac{3\ell}{2G}(1-1/\mu\ell)
  ightarrow 0$  and  $\psi^m
  ightarrow \psi^L$  [Li, Song, Strominger '08]
- +  $\psi^{\log}$  is a valid solution. Jordan block!  $_{\rm [Grumiller, NJ '08]}$
- +  $\psi^{
  m log}={
  m propagating}~{
  m dof}~{
  m also}~{
  m nonlinearly}.$  [Grumiller, Jackiw, NJ '08] [Carlip '08]

- $c_L=rac{3\ell}{2G}(1-1/\mu\ell)
  ightarrow 0$  and  $\psi^m
  ightarrow \psi^L$  [Li, Song, Strominger '08]
- $\psi^{\log}$  is a valid solution. Jordan block!  $_{\rm [Grumiller, NJ '08]}$
- $\psi^{
  m log}={
  m propagating}~{
  m dof}~{
  m also}~{
  m nonlinearly}.~{
  m [Grumiller,~Jackiw,~NJ~'08]}~{
  m [Carlip~'08]}$
- $\exists$  consistent BCs for  $\psi^{\log}$ . ASG = Virasoro<sup>2</sup>. [Grumiller, NJ '08]

- $c_L=rac{3\ell}{2G}(1-1/\mu\ell)
  ightarrow 0$  and  $\psi^m
  ightarrow \psi^L$  [Li, Song, Strominger '08]
- $\psi^{\log}$  is a valid solution. Jordan block!  $_{\rm [Grumiller, NJ '08]}$
- +  $\psi^{
  m log}=$  propagating dof also nonlinearly. [Grumiller, Jackiw, NJ '08] [Carlip '08]
- $\exists$  consistent BCs for  $\psi^{\log}$ . ASG = Virasoro^2. [Grumiller, NJ '08]
- Correlators!

$$\langle \psi^{\log}\psi^{\log} \rangle = \delta^{(2)}S_{\text{grav}}(\psi^{\log},\psi^{\log}) = -\frac{b\ln(m_L^2|z|^2)}{z^{2h}}$$

The 'new anomaly'  $b=-rac{3\ell}{G}.$  [Skenderis, Taylor, v Rees '09] [Grumiller, Sachs '09]



- $c_L=rac{3\ell}{2G}(1-1/\mu\ell)
  ightarrow 0$  and  $\psi^m
  ightarrow \psi^L$  [Li, Song, Strominger '08]
- $\psi^{\log}$  is a valid solution. Jordan block!  $_{\rm [Grumiller, NJ '08]}$
- +  $\psi^{
  m log}=$  propagating dof also nonlinearly. [Grumiller, Jackiw, NJ '08] [Carlip '08]
- $\exists$  consistent BCs for  $\psi^{\log}$ . ASG = Virasoro^2. [Grumiller, NJ '08]
- Correlators!

$$\langle \psi^{\log}\psi^{\log} \rangle = \delta^{(2)} S_{\text{grav}}(\psi^{\log},\psi^{\log}) = -\frac{b\ln(m_L^2|z|^2)}{z^{2h}}$$

The 'new anomaly'  $b=-rac{3\ell}{G}.$  [Skenderis, Taylor, v Rees '09] [Grumiller, Sachs '09]

• 3-point correlator also match! [Grumiller, Sachs '09]



- $c_L=rac{3\ell}{2G}(1-1/\mu\ell)
  ightarrow 0$  and  $\psi^m
  ightarrow \psi^L$  [Li, Song, Strominger '08]
- $\psi^{\log}$  is a valid solution. Jordan block!  $_{\rm [Grumiller, NJ '08]}$
- +  $\psi^{
  m log}=$  propagating dof also nonlinearly. [Grumiller, Jackiw, NJ '08] [Carlip '08]
- $\exists$  consistent BCs for  $\psi^{\log}$ . ASG = Virasoro^2. [Grumiller, NJ '08]
- Correlators!

$$\langle \psi^{\log}\psi^{\log} \rangle = \delta^{(2)} S_{\text{grav}}(\psi^{\log},\psi^{\log}) = -\frac{b \ln (m_L^2 |z|^2)}{z^{2h}}$$

The 'new anomaly'  $b=-rac{3\ell}{G}.$  [Skenderis, Taylor, v Rees '09] [Grumiller, Sachs '09]

- 3-point correlator also match! [Grumiller, Sachs '09]
- 1-loop partition function consistent with LCFT. [Gaberdiel, Grumiller, Sachs '10]

11 of 16

- $D^{m_1} = D^L$ :  $T_{zz}$  has log-partner!
- $D^{m_1} = D^{m_2}$ :  $\mathcal{O}^M$  has log-partner!
- $D^{m_1} = D^{m_2} = D^L$ : Rank 3 Jordan cell!
- $c_L = c_R = 0$ : log-NMG Both  $T_{zz}$  and  $T_{\overline{z}\overline{z}}$  logged!
- PMG! c<sub>L</sub> = c<sub>R</sub> ≠ 0 Enhanced gauge symmetry!



- $D^{m_1} = D^L$ :  $T_{zz}$  has log-partner!
- $D^{m_1} = D^{m_2}$ :  $\mathcal{O}^M$  has log-partner!
- $D^{m_1} = D^{m_2} = D^L$ : Rank 3 Jordan cell!
- c<sub>L</sub> = c<sub>R</sub> = 0: log-NMG Both T<sub>zz</sub> and T<sub>zz</sub> logged!
- PMG!  $c_L = c_R \neq 0$ Enhanced gauge symmetry!



- Two limits:  $\psi^{m_1/m_2} o \psi^{L/R}$  or  $\psi^{m_1} o \psi^{m_2} o \psi^0$
- $c_{L/R} = rac{3\ell}{2G} (\sigma + rac{1}{2m^2\ell^2}) 
  ightarrow 0.$  [Bergshoeff, Hohm, Townsend '09]



- Two limits:  $\psi^{m_1/m_2} o \psi^{L/R}$  or  $\psi^{m_1} o \psi^{m_2} o \psi^0$
- $c_{L/R} = \frac{3\ell}{2G} (\sigma + \frac{1}{2m^2\ell^2}) \rightarrow 0.$  [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} 
  ightarrow \psi^{L/R}$ ,  $\psi^{\log}$  is a valid solution. Jordan block! [Liu, Sun '09]

- Two limits:  $\psi^{m_1/m_2} \to \psi^{L/R}$  or  $\psi^{m_1} \to \psi^{m_2} \to \psi^0$
- $c_{L/R} = \frac{3\ell}{2G} (\sigma + \frac{1}{2m^2\ell^2}) \rightarrow 0.$  [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} 
  ightarrow \psi^{L/R}$ ,  $\psi^{\log}$  is a valid solution. Jordan block! [Liu, Sun '09]
- +  $\psi^{\log}=$  propagating dof also nonlinearly. [Blagojević, Cvetković '10]

- Two limits:  $\psi^{m_1/m_2} o \psi^{L/R}$  or  $\psi^{m_1} o \psi^{m_2} o \psi^0$
- $c_{L/R} = \frac{3\ell}{2G} (\sigma + \frac{1}{2m^2\ell^2}) \rightarrow 0.$  [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} 
  ightarrow \psi^{L/R}$ ,  $\psi^{\log}$  is a valid solution. Jordan block! [Liu, Sun '09]
- +  $\psi^{\log}=$  propagating dof also nonlinearly. [Blagojević, Cvetković '10]
- $\exists$  consistent BCs for  $\psi^{\log}$ . ASG = Virasoro<sup>2</sup>. [Liu, Sun '09]

- Two limits:  $\psi^{m_1/m_2} o \psi^{L/R}$  or  $\psi^{m_1} o \psi^{m_2} o \psi^0$
- $c_{L/R} = \frac{3\ell}{2G} (\sigma + \frac{1}{2m^2\ell^2}) \rightarrow 0$ . [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} 
  ightarrow \psi^{L/R}$ ,  $\psi^{\log}$  is a valid solution. Jordan block! [Liu, Sun '09]
- +  $\psi^{\log}=$  propagating dof also nonlinearly. [Blagojević, Cvetković '10]
- $\exists$  consistent BCs for  $\psi^{\log}$ . ASG = Virasoro<sup>2</sup>. [Liu, Sun '09]
- 2-point correlators match! [Grumiller, Hohm '09], [Alishahiha, Naseh '10]

- Two limits:  $\psi^{m_1/m_2} o \psi^{L/R}$  or  $\psi^{m_1} o \psi^{m_2} o \psi^0$
- $c_{L/R} = \frac{3\ell}{2G} (\sigma + \frac{1}{2m^2\ell^2}) \rightarrow 0.$  [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} 
  ightarrow \psi^{L/R}$ ,  $\psi^{\log}$  is a valid solution. Jordan block! [Liu, Sun '09]
- +  $\psi^{\log}=$  propagating dof also nonlinearly. [Blagojević, Cvetković '10]
- $\exists$  consistent BCs for  $\psi^{\log}$ . ASG = Virasoro<sup>2</sup>. [Liu, Sun '09]
- 2-point correlators match! [Grumiller, Hohm '09], [Alishahiha, Naseh '10]
- $c_{L/R} \neq 0! \langle \psi^{m_1} \psi^{m_1} \rangle \sim -\langle \psi^{m_2} \psi^{m_2} \rangle \sim \pm c \epsilon$ . Jordan block, new (consistent) BCs! [Oliva, Tempo, Troncoso '09]



- Two limits:  $\psi^{m_1/m_2} o \psi^{L/R}$  or  $\psi^{m_1} o \psi^{m_2} o \psi^0$
- $c_{L/R} = \frac{3\ell}{2G} (\sigma + \frac{1}{2m^2\ell^2}) \rightarrow 0.$  [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} 
  ightarrow \psi^{L/R}$ ,  $\psi^{\log}$  is a valid solution. Jordan block! [Liu, Sun '09]
- +  $\psi^{\log}=$  propagating dof also nonlinearly. [Blagojević, Cvetković '10]
- $\exists$  consistent BCs for  $\psi^{\log}$ . ASG = Virasoro<sup>2</sup>. [Liu, Sun '09]
- 2-point correlators match! [Grumiller, Hohm '09], [Alishahiha, Naseh '10]
- $c_{L/R} \neq 0! \langle \psi^{m_1} \psi^{m_1} \rangle \sim -\langle \psi^{m_2} \psi^{m_2} \rangle \sim \pm c \epsilon$ . Jordan block, new (consistent) BCs! [Oliva, Tempo, Troncoso '09]
- Actually this theory has many interesting features already logless. [Bergshoeff, Hohm, Townsend '09]



- Two limits:  $\psi^{m_1/m_2} o \psi^{L/R}$  or  $\psi^{m_1} o \psi^{m_2} o \psi^0$
- $c_{L/R} = \frac{3\ell}{2G} (\sigma + \frac{1}{2m^2\ell^2}) \rightarrow 0.$  [Bergshoeff, Hohm, Townsend '09]
- $\psi^{m_{1,2}} 
  ightarrow \psi^{L/R}$ ,  $\psi^{\log}$  is a valid solution. Jordan block! [Liu, Sun '09]
- +  $\psi^{\log}=$  propagating dof also nonlinearly. [Blagojević, Cvetković '10]
- $\exists$  consistent BCs for  $\psi^{\log}$ . ASG = Virasoro<sup>2</sup>. [Liu, Sun '09]
- 2-point correlators match! [Grumiller, Hohm '09], [Alishahiha, Naseh '10]
- $c_{L/R} \neq 0! \langle \psi^{m_1} \psi^{m_1} \rangle \sim -\langle \psi^{m_2} \psi^{m_2} \rangle \sim \pm c \epsilon$ . Jordan block, new (consistent) BCs! [Oliva, Tempo, Troncoso '09]
- Actually this theory has many interesting features already logless. [Bergshoeff, Hohm, Townsend '09]



- D<sup>m1</sup> = D<sup>L</sup>: T<sub>zz</sub> has log-partner!
- $D^{m_1} = D^{m_2}$ :  $\mathcal{O}^M$  has log-partner!
- $D^{m_1} = D^{m_2} = D^L$ : Rank 3 Jordan cell!
- c<sub>L</sub> = c<sub>R</sub> = 0: log-NMG Both T<sub>zz</sub> and T<sub>zz</sub> logged!
- PMG! c<sub>L</sub> = c<sub>R</sub> ≠ 0 Enhanced gauge symmetry!





- $D^{m_1} = D^L$ :  $T_{zz}$  has log-partner!
- $D^{m_1} = D^{m_2}$ :  $\mathcal{O}^M$  has log-partner!
- $D^{m_1} = D^{m_2} = D^L$ : Rank 3 Jordan cell!
- c<sub>L</sub> = c<sub>R</sub> = 0: log-NMG Both T<sub>zz</sub> and T<sub>zz</sub> logged!
- PMG! c<sub>L</sub> = c<sub>R</sub> ≠ 0 Enhanced gauge symmetry!



- $D^{m_1} = D^L$ :  $T_{zz}$  has log-partner!
- $D^{m_1} = D^{m_2}$ :  $\mathcal{O}^M$  has log-partner!
- $D^{m_1} = D^{m_2} = D^L$ : Rank 3 Jordan cell!
- c<sub>L</sub> = c<sub>R</sub> = 0: log-NMG Both T<sub>zz</sub> and T<sub>zz</sub> logged!
- PMG! c<sub>L</sub> = c<sub>R</sub> ≠ 0 Enhanced gauge symmetry!



# Test of the conjectures ...GMG



• Rank 3 Jordan cell if  $m_1\ell=m_2\ell=1.$   $\log^2$  behaviour! [Liu, Sun'09]





- Rank 3 Jordan cell if  $m_1\ell=m_2\ell=1.$  log 2 behaviour! [Liu, Sun'09]
- Central charges vanish when they should.





- Rank 3 Jordan cell if  $m_1\ell=m_2\ell=1.$  log 2 behaviour! [Liu, Sun'09]
- Central charges vanish when they should.
- In fact, limit procedure always consistent! [Grumiller, NJ, Zojer '10]





- Central charges vanish when they should.
- In fact, limit procedure always consistent! [Grumiller, NJ, Zojer '10]
- 2-point correlators?





- Central charges vanish when they should.
- In fact, limit procedure always consistent! [Grumiller, NJ, Zojer '10]
- 2-point correlators?
- 3-point correlators?





- Central charges vanish when they should.
- In fact, limit procedure always consistent! [Grumiller, NJ, Zojer '10]
- 2-point correlators?
- 3-point correlators?
- 1-point correlators?

• AdS/LCFT well supported for TMG at  $\mu \ell = 1$ .



- AdS/LCFT well supported for TMG at  $\mu \ell = 1$ .
- Also fairly well for NMG at  $m_1\ell=1=-m_2\ell$



- AdS/LCFT well supported for TMG at  $\mu \ell = 1$ .
- Also fairly well for NMG at  $m_1\ell=1=-m_2\ell$
- Structural similarity suggestive for GMG.

- AdS/LCFT well supported for TMG at  $\mu \ell = 1$ .
- Also fairly well for NMG at  $m_1\ell=1=-m_2\ell$
- Structural similarity suggestive for GMG.
- Also for extended NMG!
- AdS/LCFT well supported for TMG at  $\mu \ell = 1$ .
- Also fairly well for NMG at  $m_1\ell=1=-m_2\ell$
- Structural similarity suggestive for GMG.
- Also for extended NMG!

To do:



- AdS/LCFT well supported for TMG at  $\mu \ell = 1$ .
- Also fairly well for NMG at  $m_1\ell=1=-m_2\ell$
- Structural similarity suggestive for GMG.
- Also for extended NMG!

To do:

• Further support!

- AdS/LCFT well supported for TMG at  $\mu \ell = 1$ .
- Also fairly well for NMG at  $m_1\ell=1=-m_2\ell$
- Structural similarity suggestive for GMG.
- Also for extended NMG!

To do:

- Further support!
- But, more importantly: connect to real physics!

- AdS/LCFT well supported for TMG at  $\mu \ell = 1$ .
- Also fairly well for NMG at  $m_1\ell=1=-m_2\ell$
- Structural similarity suggestive for GMG.
- Also for extended NMG!

To do:

- Further support!
- But, more importantly: connect to real physics!

#### Thank you!



