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Equalities in mathematics and physics

I Equalities are a core part of mathematics

Example: 196883 + 1 = 196884
I Whether an equality is interesting or boring depends on context

196883 = smallest dimension of non-trivial rep. of monster group
196884 = first non-trivial coefficient of modular J-function
equality above with this context: “monstrous moonshine”

I Whether an equality is useful for physics is generally unclear — but
often interesting equalities tend to have applications in physics

(flat space) chiral gravity is a theory with a (cosmological) horizon
that has a classical entropy of 4π (in suitable units); in the full
quantum theory this entropy gets shifted

S = 4π + quant. corr.
(
≈ 12.6 + quant. corr.

)
= ln 196883

(
≈ 12.2

)
the number 196883 is interpreted as number of microstates and stems
from “monstrous moonshine” above

I Equalities are also core part of comparing theory with experiment

Example: gex/2 = 1.00115965218(073), gth/2 = 1.00115965218(178)
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Inequalities in mathematics

I Inequalities are another core part of mathematics

I Many inequalities stem from simple observation that squares of real
numbers cannot be negative

p2 ≥ 0 ∀p ∈ R

I Many inequalities are of Cauchy–Schwarz type

|u||v| ≥ |u · v|

here u, v are some vector, || is their length and · the inner product

I Many inequalities from convexity (Jensen’s inequality)
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numbers cannot be negative

p2 ≥ 0 ∀p ∈ R

Example: given two positive real numbers a, b

algebraic mean ≥ geometric mean

Proof: take p = a− b and get from inequality above

(a− b)2 = a2 − 2ab+ b2 ≥ 0

add on both sides 4ab

a2 + 2ab+ b2 = (a+ b)2 ≥ 4ab

take square root and then divide by 2

a+ b

2
≥
√
ab
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I Inequalities are another core part of mathematics
I Many inequalities stem from simple observation that squares of real

numbers cannot be negative

p2 ≥ 0 ∀p ∈ R
I Many inequalities are of Cauchy–Schwarz type

|u||v| ≥ |u · v|
here u, v are some vector, || is their length and · the inner product

.

e.g. triangle inequality

|u|+ |v| ≥ |u+ v|

graphic proof evident

I Many inequalities from convexity (Jensen’s inequality)

Daniel Grumiller — Quantum Null Energy Condition 3/11



Inequalities in mathematics

I Inequalities are another core part of mathematics

I Many inequalities stem from simple observation that squares of real
numbers cannot be negative

p2 ≥ 0 ∀p ∈ R

I Many inequalities are of Cauchy–Schwarz type

|u||v| ≥ |u · v|

here u, v are some vector, || is their length and · the inner product

I Many inequalities from convexity (Jensen’s inequality)

Daniel Grumiller — Quantum Null Energy Condition 3/11



Inequalities in mathematics

I Inequalities are another core part of mathematics
I Many inequalities stem from simple observation that squares of real

numbers cannot be negative

p2 ≥ 0 ∀p ∈ R
I Many inequalities are of Cauchy–Schwarz type

|u||v| ≥ |u · v|

here u, v are some vector, || is their length and · the inner product
I Many inequalities from convexity (Jensen’s inequality)

.

special case of Jensen’s inequality:
secant always above convex curve
between intersection points x1, x2
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Inequalities in physics

Interesting physical consequences from mathematical inequalities

I Positivity inequalities: probabilities non-negative, P ≥ 0

I Cauchy–Schwarz inequalities: Heisenberg uncertainty, ∆x∆p ≥ 1
2

I Convexity inequalities: second law of thermodynamics, δS ≥ 0
I In gravitational context: energy inequalities

I Definition: (local) inequalities on the stress tensor Tµν
e.g. Null Energy Condition (NEC)

Tkk = Tµν k
µkν ≥ 0 ∀kµkµ = 0

I Physically plausible (positivity of energy fluxes)
I Mathematically useful (singularity theorem, area theorem)

However: all of them violated by quantum effects!

Are there quantum energy conditions?
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Quantum energy conditions

I Definition: quantum energy condition = convexity condition for 〈Tµν〉
valid for any state and any (reasonable) quantum field theory (QFT)

I Example: Averaged Null Energy Condition (ANEC)∫
dxλkλ 〈Tµνkµkν〉 ≥ 0

valid ∀kµ(with kµkµ = 0) and ∀ states |〉 in any (reasonable) QFT

I ANEC proved under rather generic assumptions

I ANEC sufficient for focussing properties used in singularity theorems

I ANEC compatible with quantum interest conjecture

I However: ANEC is non-local (
∫

dx+)

Is there a local quantum energy condition?

Daniel Grumiller — Quantum Null Energy Condition 5/11



Quantum energy conditions

I Definition: quantum energy condition = convexity condition for 〈Tµν〉
valid for any state and any (reasonable) quantum field theory (QFT)

I Example: Averaged Null Energy Condition (ANEC)∫
dxλkλ 〈Tµνkµkν〉 ≥ 0

valid ∀kµ(with kµkµ = 0) and ∀ states |〉 in any (reasonable) QFT

I ANEC proved under rather generic assumptions

I ANEC sufficient for focussing properties used in singularity theorems

I ANEC compatible with quantum interest conjecture

I However: ANEC is non-local (
∫

dx+)

Is there a local quantum energy condition?

Daniel Grumiller — Quantum Null Energy Condition 5/11



Quantum energy conditions

I Definition: quantum energy condition = convexity condition for 〈Tµν〉
valid for any state and any (reasonable) quantum field theory (QFT)

I Example: Averaged Null Energy Condition (ANEC)∫
dxλkλ 〈Tµνkµkν〉 ≥ 0

valid ∀kµ(with kµkµ = 0) and ∀ states |〉 in any (reasonable) QFT
I ANEC proved under rather generic assumptions

Faulkner, Leigh, Parrikar and Wang 1605.08072

Hartman, Kundu and Tajdini 1610.05308

I ANEC sufficient for focussing properties used in singularity theorems
I ANEC compatible with quantum interest conjecture
I However: ANEC is non-local (

∫
dx+)

Is there a local quantum energy condition?
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Quantum null energy condition (QNEC)
Proposed by Bousso, Fisher, Leichenauer and Wall in 1506.02669

QNEC (in D > 2) is the following inequality

〈Tkk〉 ≥
~

2π
√
γ
S′′

I Tkk = Tµνk
µkν with kµk

µ = 0 and 〈〉 denotes expectation value
I S′′: 2nd variation of EE for entangling surface deformations along kµ
I
√
γ: induced volume form of entangling region (black boundary curve)
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Proposed by Bousso, Fisher, Leichenauer and Wall in 1506.02669

QNEC (in D > 2) is the following inequality

〈Tkk〉 ≥
~

2π
√
γ
S′′

Obvious observations:
I if r.h.s. vanishes: semi-classical version of NEC
I if r.h.s. negative: weaker condition than NEC

(NEC can be violated while QNEC holds)
I if r.h.s. positive: stronger condition than NEC

(if QNEC holds also NEC holds)

I Tkk = Tµνk
µkν with kµk

µ = 0 and 〈〉 denotes expectation value
I S′′: 2nd variation of EE for entangling surface deformations along kµ
I
√
γ: induced volume form of entangling region (black boundary curve)
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Proofs (D > 2)

I For free QFTs: Bousso, Fisher, Koeller, Leichenauer and Wall, 1509.02542

I For holographic CFTs: Koeller and Leichenauer, 1512.06109

I For general CFTs: Balakrishnan, Faulkner, Khandker and Wang, 1706.09432

I Saturation of QNEC for contact terms (“Energy is Entanglement”):
Leichenauer, Levine and Shahbazi-Moghaddam, 1802.02584

QNEC (in CFT2) is the following inequality

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

c > 0 is the central charge of the CFT2

I S like anomalous operator with conformal weights (0, 0)
⇒ construct vertex operator V = exp [6c S]

I QNEC saturation equivalent to vertex operator solving Hill’s equation

V ′′ − LV = 0 L ∼ 〈Tkk〉
I QNEC saturated for vacuum, thermal states and their descendants
I QNEC not saturated in hol. CFT2 with positive bulk energy fluxes
I QNEC can be violated in hol. CFT2 with negative bulk energy fluxes
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Proofs and counter examples (D = 2)
Ongoing work with Ecker, Stanzer and van der Schee

QNEC (in CFT2) is the following inequality

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

c > 0 is the central charge of the CFT2

I S like anomalous operator with conformal weights (0, 0)
⇒ construct vertex operator V = exp [6c S]

I QNEC saturation equivalent to vertex operator solving Hill’s equation

V ′′ − LV = 0 L ∼ 〈Tkk〉

I QNEC saturated for vacuum, thermal states and their descendants
I QNEC not saturated in hol. CFT2 with positive bulk energy fluxes
I QNEC can be violated in hol. CFT2 with negative bulk energy fluxes

Daniel Grumiller — Quantum Null Energy Condition 7/11



Proofs and counter examples (D = 2)
Ongoing work with Ecker, Stanzer and van der Schee

QNEC (in CFT2) is the following inequality

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

c > 0 is the central charge of the CFT2

I S like anomalous operator with conformal weights (0, 0)
⇒ construct vertex operator V = exp [6c S]

I QNEC saturation equivalent to vertex operator solving Hill’s equation

V ′′ − LV = 0 L ∼ 〈Tkk〉

I QNEC saturated for vacuum, thermal states and their descendants
I QNEC not saturated in hol. CFT2 with positive bulk energy fluxes
I QNEC can be violated in hol. CFT2 with negative bulk energy fluxes

Daniel Grumiller — Quantum Null Energy Condition 7/11



Proofs and counter examples (D = 2)
Ongoing work with Ecker, Stanzer and van der Schee

QNEC (in CFT2) is the following inequality

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

c > 0 is the central charge of the CFT2

I S like anomalous operator with conformal weights (0, 0)
⇒ construct vertex operator V = exp [6c S]

I QNEC saturation equivalent to vertex operator solving Hill’s equation

V ′′ − LV = 0 L ∼ 〈Tkk〉

I QNEC saturated for vacuum, thermal states and their descendants
I QNEC not saturated in hol. CFT2 with positive bulk energy fluxes
I QNEC can be violated in hol. CFT2 with negative bulk energy fluxes

Daniel Grumiller — Quantum Null Energy Condition 7/11



Proofs and counter examples (D = 2)
Ongoing work with Ecker, Stanzer and van der Schee

QNEC (in CFT2) is the following inequality

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

c > 0 is the central charge of the CFT2

I S like anomalous operator with conformal weights (0, 0)
⇒ construct vertex operator V = exp [6c S]

I QNEC saturation equivalent to vertex operator solving Hill’s equation

V ′′ − LV = 0 L ∼ 〈Tkk〉

I QNEC saturated for vacuum, thermal states and their descendants

I QNEC not saturated in hol. CFT2 with positive bulk energy fluxes
I QNEC can be violated in hol. CFT2 with negative bulk energy fluxes

Daniel Grumiller — Quantum Null Energy Condition 7/11



Proofs and counter examples (D = 2)
Ongoing work with Ecker, Stanzer and van der Schee

QNEC (in CFT2) is the following inequality

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

c > 0 is the central charge of the CFT2

I S like anomalous operator with conformal weights (0, 0)
⇒ construct vertex operator V = exp [6c S]

I QNEC saturation equivalent to vertex operator solving Hill’s equation

V ′′ − LV = 0 L ∼ 〈Tkk〉

I QNEC saturated for vacuum, thermal states and their descendants
I QNEC not saturated in hol. CFT2 with positive bulk energy fluxes

I QNEC can be violated in hol. CFT2 with negative bulk energy fluxes

Daniel Grumiller — Quantum Null Energy Condition 7/11



Proofs and counter examples (D = 2)
Ongoing work with Ecker, Stanzer and van der Schee

QNEC (in CFT2) is the following inequality

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

c > 0 is the central charge of the CFT2

I S like anomalous operator with conformal weights (0, 0)
⇒ construct vertex operator V = exp [6c S]

I QNEC saturation equivalent to vertex operator solving Hill’s equation

V ′′ − LV = 0 L ∼ 〈Tkk〉

I QNEC saturated for vacuum, thermal states and their descendants
I QNEC not saturated in hol. CFT2 with positive bulk energy fluxes
I QNEC can be violated in hol. CFT2 with negative bulk energy fluxes

Daniel Grumiller — Quantum Null Energy Condition 7/11



Calculating QNEC holographically

calculating CFT observable holographically = some gravity calculation

AdS/CFT:

Maldacena hep-th/9711200 (> 13700 citations; > 50 in May 2018)
Gubser, Klebanov and Polyakov hep-th/9802109

Witten hep-th/9802150

holographic stress tensor:

Henningson and Skenderis hep-th/9806087

Balasubramanian and Kraus hep-th/9902121

Emparan, Johnson and Myers hep-th/9903238

de Haro, Solodukhin and Skenderis hep-th/0002230

holographic entanglement entropy (HEE):

Ryu and Takayanagi hep-th/0603001
Hubeny, Rangamani and Takayanagi 0705.0016
Swingle 0905.1317 (possible relation between MERA and holography)

I need holographic computation of 〈Tkk〉
I need holographic computation of (deformations of) EE
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Calculating QNEC holographically

calculating CFT observable holographically = some gravity calculation

I need holographic computation of 〈Tkk〉

well-known AdS/CFT prescription: extract boundary stress tensor
from bulk metric expanded near AdS boundary

Example: AdS3/CFT2

ds2 =
`2

z2
(

dz2+2 dx+ dx−
)
+〈T++〉

(
dx+

)2
+〈T−−〉

(
dx−

)2
+O

(
z2
)

AdS3 boundary: z → 0
O(1) terms in metric: flux components of stress tensor 〈T±±〉
(trace vanishes, 〈T+−〉 = 0)
`: so-called AdS-radius (cosmological constant Λ = −1/`2)

I need holographic computation of (deformations of) EE
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Calculating QNEC holographically

calculating CFT observable holographically = some gravity calculation

I need holographic computation of 〈Tkk〉
I need holographic computation of (deformations of) EE

HEE = area of extremal surface

simple to calculate!

also: simple proof of strong
subadditivity inequalities
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Thermal case
see work with Ecker, Stanzer and van der Schee 1710.09837

thermal states in CFT4 = black holes in AdS5

I paper-and-pencil calculation starts with Schwarzschild black brane

ds2 =
1

z2
(
− f(z) dt2 +

dz2

f(z)
+ dy2 + dx21 + dx22

)
with f(z) = 1− π4T 4z4

I determine area of minimal surfaces for small temperature, T`� 1,
and extract HEE (` = width of strip)

1

2π
S′′ ≈ −0.065

`4
+ 0.019π4T 4 − 0.083 `4π8T 8 +O

(
`8T 12

)
I do same for large temperatures, T`� 1

1

2π
S′′ ≈ −0.364π4T 4 e−

√
6`πT +O

(
e−2
√
6`πT

)
I use numerics for intermediate values of temperature
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Thermal case
see work with Ecker, Stanzer and van der Schee 1710.09837

thermal states in CFT4 = black holes in AdS5
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Colliding gravitational shockwaves and QNEC saturation
see work with Ecker, Stanzer and van der Schee 1710.09837

plasma formation in CFT4 = colliding gravitational shock waves in AdS5

toy model for quark-gluon plasma formation in heavy ion collisions
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Colliding gravitational shockwaves and QNEC saturation
see work with Ecker, Stanzer and van der Schee 1710.09837

plasma formation in CFT4 = colliding gravitational shock waves in AdS5

toy model for quark-gluon plasma formation in heavy ion collisions
I paper-and-pencil calculations with Romatschke 0803.3226

I δ-like shocks
I particle production in forward lightcone of shocks
I shortly after collision anisotropic pressure: PL/E = −3, PT /E = +2

confirmed numerically for thin shocks by Casalderrey-Solana, Heller,
Mateos and van der Schee 1305.4919

I close to shockwaves negative energy fluxes ⇒ NEC violation!
confirmed numerically and interpreted as absence of local rest frame by
Arnold, Romatschke and van der Schee 1408.2518

I consider finite width gravitational shockwaves
(pioneered numerically by Chesler and Yaffe 1011.3562)

I extract metric, holographic stress tensor and HEE numerically

I check QNEC and its saturation, particularly in region of NEC violation
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Colliding gravitational shockwaves and QNEC saturation
see work with Ecker, Stanzer and van der Schee 1710.09837

plasma formation in CFT4 = colliding gravitational shock waves in AdS5

toy model for quark-gluon plasma formation in heavy ion collisions

Left: energy density plot Right: black region violates NEC

Daniel Grumiller — Quantum Null Energy Condition 10/11

https://arxiv.org/abs/1710.09837


Colliding gravitational shockwaves and QNEC saturation
see work with Ecker, Stanzer and van der Schee 1710.09837

plasma formation in CFT4 = colliding gravitational shock waves in AdS5

toy model for quark-gluon plasma formation in heavy ion collisions
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Open issues

I QNEC proof for generic relativistic unitary QFT?

I QNEC in certain non-unitary theories (like log CFT)?
I further special features of QNEC for CFT2?
I Hawking radiation and QNEC-(non-)violation?
I QNEC analogs in non-relativistic QFTs?
I phenomenology of QNEC-(non-)saturation?
I experimental aspects of QNEC?

Thanks for your attention!
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